ترغب بنشر مسار تعليمي؟ اضغط هنا

The Prototype GAPS (pGAPS) Experiment

111   0   0.0 ( 0 )
 نشر من قبل S. A. Isaac Mognet
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS experiment (pGAPS) was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS experiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agencys (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 hours, with over 3 hours at float altitude (~33 km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded.



قيم البحث

اقرأ أيضاً

The General Anti-Particle Spectrometer (GAPS) project is being carried out to search for primary cosmic-ray antiparticles especially for antideuterons produced by cold dark matter. GAPS plans to realize the science observation by Antarctic long durat ion balloon flights in the late 2010s. In preparation for the Antarctic science flights, an engineering balloon flight using a prototype of the GAPS instrument, pGAPS, was successfully carried out in June 2012 in Japan to verify the basic performance of each GAPS subsystem. The outline of the pGAPS flight campaign is briefly reported.
A Si(Li) detector fabrication procedure has been developed with the aim of satisfying the unique requirements of the GAPS (General Antiparticle Spectrometer) experiment. Si(Li) detectors are particularly well-suited to the GAPS detection scheme, in w hich several planes of detectors act as the target to slow and capture an incoming antiparticle into an exotic atom, as well as the spectrometer and tracker to measure the resulting decay X-rays and annihilation products. These detectors must provide the absorption depth, energy resolution, tracking efficiency, and active area necessary for this technique, all within the significant temperature, power, and cost constraints of an Antarctic long-duration balloon flight. We report here on the fabrication and performance of prototype 2-diameter, 1-1.25 mm-thick, single-strip Si(Li) detectors that provide the necessary X-ray energy resolution of $sim$4 keV for a cost per unit area that is far below that of previously-acquired commercial detectors. This fabrication procedure is currently being optimized for the 4-diameter, 2.5 mm-thick, multi-strip geometry that will be used for the GAPS flight detectors.
The General AntiParticle Spectrometer experiment (GAPS) is foreseen to carry out a dark matter search using low-energy cosmic ray antideuterons at stratospheric altitudes with a novel detection approach. A prototype flight from Taiki, Japan was carri ed out in June 2012 to prove the performance of the GAPS instrument subsystems (Lithium-drifted Silicon tracker and time-of-flight) and the thermal cooling concept as well as to measure background levels. The flight was a success and the stable flight operation of the GAPS detector concept was proven. During the flight about $10^6$ charged particle triggers were recorded, extensive X-ray calibrations of the individual tracker modules were performed by using an onboard X-ray tube, and the background level of atmospheric and cosmic X-rays was measured. The behavior of the tracker performance as a function of temperature was investigated. The tracks of charged particle events were reconstructed and used to study the tracking resolution, the detection efficiency of the tracker, and coherent X-ray backgrounds. A timing calibration of the time-of-flight subsystem was performed to measure the particle velocity. The flux as a function of flight altitude and as a function of velocity was extracted taking into account systematic instrumental effects. The developed analysis techniques will form the basis for future flights.
122 - S. Quinn , T. Aramaki , R. Bird 2018
The General AntiParticle Spectrometer (GAPS) is a balloon-borne instrument designed to detect cosmic-ray antimatter using the novel exotic atom technique, obviating the strong magnetic fields required by experiments like AMS, PAMELA, or BESS. It will be sensitive to primary antideuterons with kinetic energies of $approx0.05-0.2$ GeV/nucleon, providing some overlap with the previously mentioned experiments at the highest energies. For $3times35$ day balloon flights, and standard classes of primary antideuteron propagation models, GAPS will be sensitive to $m_{mathrm{DM}}approx10-100$ GeV c$^{-2}$ WIMPs with a dark-matter flux to astrophysical flux ratio approaching 100. This clean primary channel is a key feature of GAPS and is crucial for a rare event search. Additionally, the antiproton spectrum will be extended with high statistics measurements to cover the $0.07 leq E leq 0.25 $ GeV domain. For $E>0.2$ GeV GAPS data will be complementary to existing experiments, while $E<0.2$ GeV explores a new regime. The first flight is scheduled for late 2020 in Antarctica. These proceedings will describe the astrophysical processes and backgrounds relevant to the dark matter search, a brief discussion of detector operation, and construction progress made to date.
80 - M. Kozai , H. Fuke , M. Yamada 2018
We have developed large-area lithium-drifted silicon (Si(Li)) detectors to meet the unique requirements of the General Antiparticle Spectrometer (GAPS) experiment. GAPS is an Antarctic balloon-borne mission scheduled for the first flight in late 2020 . The GAPS experiment aims to survey low-energy cosmic-ray antinuclei, particularly antideuterons, which are recognized as essentially background-free signals from dark matter annihilation or decay. The GAPS Si(Li) detector design is a thickness of 2.5 mm, diameter of 10 cm and 8 readout strips. The energy resolution of <4 keV (FWHM) for 20 to 100 keV X-rays at temperature of -35 to -45 C, far above the liquid nitrogen temperatures frequently used to achieve fine energy resolution, is required. We developed a high-quality Si crystal and Li-evaporation, diffusion and drift methods to form a uniform Li-drifted layer. Guard ring structure and optimal etching of the surface are confirmed to suppress the leakage current, which is a main source of noise. We found a thin un-drifted layer retained on the p-side effectively suppresses the leakage current. By these developments, we succeeded in developing the GAPS Si(Li) detector. As the ultimate GAPS instrument will require >1000 10-cm diameter Si(Li) detectors to achieve high sensitivity to rare antideuteron events, high-yield production is also a key factor for the success of the GAPS mission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا