ترغب بنشر مسار تعليمي؟ اضغط هنا

The pGAPS experiment: an engineering balloon flight of prototype GAPS

219   0   0.0 ( 0 )
 نشر من قبل Hideyuki Fuke
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The General Anti-Particle Spectrometer (GAPS) project is being carried out to search for primary cosmic-ray antiparticles especially for antideuterons produced by cold dark matter. GAPS plans to realize the science observation by Antarctic long duration balloon flights in the late 2010s. In preparation for the Antarctic science flights, an engineering balloon flight using a prototype of the GAPS instrument, pGAPS, was successfully carried out in June 2012 in Japan to verify the basic performance of each GAPS subsystem. The outline of the pGAPS flight campaign is briefly reported.



قيم البحث

اقرأ أيضاً

The General Antiparticle Spectrometer (GAPS) experiment is a novel approach for the detection of cosmic ray antiparticles. A prototype GAPS experiment (pGAPS) was successfully flown on a high-altitude balloon in June of 2012. The goals of the pGAPS e xperiment were: to test the operation of lithium drifted silicon (Si(Li)) detectors at balloon altitudes, to validate the thermal model and cooling concept needed for engineering of a full-size GAPS instrument, and to characterize cosmic ray and X-ray backgrounds. The instrument was launched from the Japan Aerospace Exploration Agencys (JAXA) Taiki Aerospace Research Field in Hokkaido, Japan. The flight lasted a total of 6 hours, with over 3 hours at float altitude (~33 km). Over one million cosmic ray triggers were recorded and all flight goals were met or exceeded.
The General AntiParticle Spectrometer experiment (GAPS) is foreseen to carry out a dark matter search using low-energy cosmic ray antideuterons at stratospheric altitudes with a novel detection approach. A prototype flight from Taiki, Japan was carri ed out in June 2012 to prove the performance of the GAPS instrument subsystems (Lithium-drifted Silicon tracker and time-of-flight) and the thermal cooling concept as well as to measure background levels. The flight was a success and the stable flight operation of the GAPS detector concept was proven. During the flight about $10^6$ charged particle triggers were recorded, extensive X-ray calibrations of the individual tracker modules were performed by using an onboard X-ray tube, and the background level of atmospheric and cosmic X-rays was measured. The behavior of the tracker performance as a function of temperature was investigated. The tracks of charged particle events were reconstructed and used to study the tracking resolution, the detection efficiency of the tracker, and coherent X-ray backgrounds. A timing calibration of the time-of-flight subsystem was performed to measure the particle velocity. The flux as a function of flight altitude and as a function of velocity was extracted taking into account systematic instrumental effects. The developed analysis techniques will form the basis for future flights.
A Si(Li) detector fabrication procedure has been developed with the aim of satisfying the unique requirements of the GAPS (General Antiparticle Spectrometer) experiment. Si(Li) detectors are particularly well-suited to the GAPS detection scheme, in w hich several planes of detectors act as the target to slow and capture an incoming antiparticle into an exotic atom, as well as the spectrometer and tracker to measure the resulting decay X-rays and annihilation products. These detectors must provide the absorption depth, energy resolution, tracking efficiency, and active area necessary for this technique, all within the significant temperature, power, and cost constraints of an Antarctic long-duration balloon flight. We report here on the fabrication and performance of prototype 2-diameter, 1-1.25 mm-thick, single-strip Si(Li) detectors that provide the necessary X-ray energy resolution of $sim$4 keV for a cost per unit area that is far below that of previously-acquired commercial detectors. This fabrication procedure is currently being optimized for the 4-diameter, 2.5 mm-thick, multi-strip geometry that will be used for the GAPS flight detectors.
We describe the in-flight performance of the horn-coupled Lumped Element Kinetic Inductance Detector arrays of the balloon-borne OLIMPO experiment. These arrays have been designed to match the spectral bands of OLIMPO: 150, 250, 350, and 460 GHz, and they have been operated at 0.3 K and at an altitude of 37.8 km during the stratospheric flight of the OLIMPO payload, in Summer 2018. During the first hours of flight, we tuned the detectors and verified their large dynamics under the radiative background variations due to elevation increase of the telescope and to the insertion of the plug-in room-temperature differential Fourier transform spectrometer into the optical chain. We have found that the detector noise equivalent powers are close to be photon-noise limited and lower than those measured on the ground. Moreover, the data contamination due to primary cosmic rays hitting the arrays is less than 3% for all the pixels of all the arrays, and less than 1% for most of the pixels. These results can be considered the first step of KID technology validation in a representative space environment.
The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne experiment aiming at measuring the polarized emission of thermal dust at a wavelength of 240 mm (1.2 THz). A first PILOT flight (fl ight#1) of the experiment took place from Timmins, Ontario, Canada, in September 2015 and a second flight (flight#2) took place from Alice Springs, Australia in april 2017. In this paper, we present the inflight performance of the instrument during these two flights. We concentrate on performances during flight#2, but allude to flight#1 performances if significantly different. We first present a short description of the instrument and the flights. We determine the time constants of our detectors combining inflight information from the signal decay following high energy particle impacts (glitches) and of our internal calibration source. We use these time constants to deconvolve the data timelines and analyse the optical quality of the instrument as measured on planets. We then analyse the structure and polarization of the instrumental background. We measure the detector response flat field and its time variations using the signal from the residual atmosphere and of our internal calibration source. Finally, we analyze the detector noise spectral and temporal properties. The in-flight performances are found to be satisfactory and globally in line with expectations from ground calibrations. We conclude by assessing the expected in-flight sensitivity of the instrument in light of the above in-flight performances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا