ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetry in the neutrino and anti-neutrino reactions in a nuclear medium

245   0   0.0 ( 0 )
 نشر من قبل Cheoun Myung Ki
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of the density-dependent axial and vector form factors on the electro-neutrino ($ u_e$) and anti-neutrino $({bar u}_e)$ reactions for a nucleon in nuclear matter or in $^{12}$C. The nucleon form factors in free space are presumed to be modified for a bound nucleon in a nuclear medium. We adopt the density-dependent form factors calculated by the quark-meson coupling (QMC) model, and apply them to the $ u_e$ and ${bar u}_e$ induced reactions with the initial energy $E = $ 8 $sim$ 80 MeV. We find that the total ${ u}_e$ cross sections on $^{12}$C as well as a nucleon in nuclear matter are reduced by about 5% at the nuclear saturation density, $rho_0$. This reduction is caused by the modification of the nucleon structure in matter. Although the density effect for both cases is relatively small, it is comparable with the effect of Coulomb distortion on the outgoing lepton in the $ u$-reaction. In contrast, the density effect on the ${bar u}_e$ reaction reduces the cross section significantly in both nuclear matter and $^{12}$C cases, and the amount maximally becomes of about 35% around $rho_0$. Such large asymmetry in the $ u_e$ and ${bar u}_e$ cross sections, which seems to be nearly independent of the target, is originated from the difference in the helicities of ${bar u}_e$ and ${ u}_e$. It is expected that the asymmetry influences the r-process and also the neutrino-process nucleosynthesis in core-collapse supernovae.



قيم البحث

اقرأ أيضاً

The methods used in the evaluation of the neutrino-nucleus cross section are reviewed. Results are shown for a variety of targets of practical importance. Many of the described reactions are accessible in future experiments with neutrino sources from the pion and muon decays at rest, which might be available at the neutron spallation facilities. Detailed comparison between the experimental and theoretical results would establish benchmarks needed for verification and/or parameter adjustment of the nuclear models. Having a reliable tool for such calculation is of great importance in a variety of applications, e.g. the neutrino oscillation studies, detection of supernova neutrinos, description of the neutrino transport in supernovae, and description of the r-process nucleosynthesis.
56 - D. Vale , T. Rauscher , 2015
We introduce a hybrid method to determine the neutrino mass hierarchy by simultaneous measurements of responses of at least two detectors to antineutrino and neutrino fluxes from accretion and cooling phases of core-collapse supernovae. The (anti)neu trino-nucleus cross sections for $^{56}$Fe and $^{208}$Pb are calculated in the framework of the relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons $mathrm{p}(bar{ u}_mathrm{e},mathrm{e}^{+})mathrm{n}$ are obtained using heavy-baryon chiral perturbation theory. The modelling of (anti)neutrino fluxes emitted from a protoneutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside the exploding star. The particle emission rates from the elementary decay modes of the daughter nuclei are calculated for normal and inverted neutrino mass hierarchy. It is shown that simultaneous use of (anti)neutrino detectors with different target material allows to determine the neutrino mass hierarchy from the ratios of $ u_mathrm{e}$- and $bar{ u}_mathrm{e}$-induced particle emissions. This hybrid method favors neutrinos from the supernova cooling phase and the implementation of detectors with heavier target nuclei ($^{208}$Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil or water is the appropriate choice.
We suggest that superscaling in electroweak interactions with nuclei, namely the observation that the reduced electron-nucleus cross sections are to a large degree independent of the momentum transfer and of the nuclear species, can be used as a tool to obtain precise predictions for neutrino-nucleus cross sections in both charged and neutral current-induced processes.
In this work, we study the influence of nuclear medium effects on various parton model sum rules in nuclei and compare the results with the free nucleon case. We have used relativistic nucleon spectral function to take into account Fermi motion, bind ing and nucleon correlations. The pion and rho meson cloud contributions have been incorporated in a microscopic model. The effect of shadowing has also been considered.
89 - S. Nakamura 2002
In interpreting the SNO experiments, accurate estimates of the u d reaction cross sections are of great importance. In our recent work, we have improved our previous calculation by updating some of its inputs and by incorporating the results of a re cent effective-field-theoretical calculation. The new cross sections are slightly (sim 1%) larger than the previously reported values. It is reasonable to assign 1% uncertainty to the u d cross sections reported here; this error estimate does not include radiative corrections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا