ﻻ يوجد ملخص باللغة العربية
In interpreting the SNO experiments, accurate estimates of the u d reaction cross sections are of great importance. In our recent work, we have improved our previous calculation by updating some of its inputs and by incorporating the results of a recent effective-field-theoretical calculation. The new cross sections are slightly (sim 1%) larger than the previously reported values. It is reasonable to assign 1% uncertainty to the u d cross sections reported here; this error estimate does not include radiative corrections.
We study breakup of the deuteron induced by neutrinos in the neutral $ u dto u np$, $bar{ u} dto bar{ u} np$ and the charged $bar{ u} dto e^+ n n$, $ u dto e^- pp$ processes. Pionless effective field theory with dibaryon fields is used to calculate
The GiBUU model, which implements all reaction channels relevant at medium neutrino energy, is used to investigate the neutrino and antineutrino scattering on iron. Results for integrated cross sections are compared with NOMAD and MINOS data. It is s
We have extended our model for charged current neutrino-nucleus interactions to neutral current reactions. For the elementary neutrino-nucleon interaction, we take into account quasielastic scattering, Delta excitation and the excitation of the reson
We present neutrino capture cross sections on 13C at supernova neutrino energies, up to 50 MeV. For both charged-current and neutral-current reactions partial cross sections are calculated using statistical Hauser-Feschbach method. Coherent elastic n
The inclusive neutrino/antineutrino-induced charged and neutral current reaction cross-sections in $^{12}C$, $^{16}O$, $^{40}Ar$, $^{56}Fe$ and $^{208}Pb$ in the energy region of supernova neutrinos/antineutrinos are studied. The calculations are per