ترغب بنشر مسار تعليمي؟ اضغط هنا

p-process in SNIA

117   0   0.0 ( 0 )
 نشر من قبل Claudia Travaglio
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore SNIa as p-process sources in the framework of two-dimensional SNIa models using enhanced s-seed distributions as directly obtained from a sequence of thermal pulse instabilities. The SNIa WD precursor is assumed to have reached the Chandrasekhar mass limit in a binary system by mass accretion from a giant/main sequence companion. We apply the tracer-particle method to reconstruct the nucleosynthesis from the thermal histories of Lagrangian particles, passively advected in the hydrodynamic calculations. For each particle we follow the explosive nucleosynthesis with a detailed nuclear reaction network. We select tracers within the typical temperature range for p-process production, 1.5-3.7 109K, and analyse in detail their behaviour, exploring the influence of different s-process distributions on the p-process nucleosynthesis. We find that SNIa contribute to a large fraction of p-nuclei, both the light p-nuclei and the heavy-p nuclei at a quite flat average production factor. For the first time, the very abundant Ru and Mo p-isotopes are reproduced at the same level as the heavy p-nuclei. We investigate the metallicity effect on the p-process production. Starting with a range of s-seeds distributions obtained for different metallicities, running SNIa two-dimensional models and using a simple chemical evolution code, we give estimates of the SNIa contribution to the solar p-process composition. We find that SNIa contribute for at least 50% at the solar p-nuclei composition, in a primary way.



قيم البحث

اقرأ أيضاً

112 - T. Rauscher 2014
The knowledge of the production of extinct radioactivities like 92Nb and 146Sm by photodisintegration processes in ccSN and SNIa models is essential for interpreting abundances in meteoritic material and for Galactic Chemical Evolution (GCE). The 92M o/92Nb and 146Sm/144Sm ratios provide constraints for GCE and production sites. We present results for SNIa with emphasis on nuclear uncertainties.
The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae with different metallicities. The predicted abundances of the short-lived radioactive isotopes 92Nb, 97Tc, 98Tc and 146Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and 13C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SNIa to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNeIa in the production of 92Nb and 146Sm. We find that, if standard Chandrasekhar-mass SNeIa are at least 50% of all SNIa, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.
It has been suggested that a $ u$p process can occur when hot, dense, and proton-rich matter is expanding within a strong flux of anti-neutrinos. In such an environment, proton-rich nuclides can be produced in sequences of proton captures and (n,p) r eactions, where the free neutrons are created in situ by $overline{ u}_mathrm{e}+mathrm{p} rightarrow mathrm{n}+mathrm{e}^+$ reactions. The detailed hydrodynamic evolution determines where the nucleosynthesis path turns off from N = Z line and how far up the nuclear chart it runs. In this work, the uncertainties on the final isotopic abundances stemming from uncertainties in the nuclear reaction rates were investigated in a large-scale Monte Carlo approach, simultaneously varying ten thousand reactions. A large range of model conditions was investigated because a definitive astrophysical site for the $ u$p process has not yet been identified. The present parameter study provides, for each model, identification of the key nuclear reactions dominating the uncertainty for a given nuclide abundance. As all rates appearing in the $ u$p process involve unstable nuclei, and thus only theoretical rates are available, the final abundance uncertainties are larger than those for nucleosynthesis processes closer to stability. Nevertheless, most uncertainties remain below a factor of three in trajectories with robust nucleosynthesis. More extreme conditions allow production of heavier nuclides but show larger uncertainties because of the accumulation of the uncertainties in many rates and because the termination of nucleosynthesis is not at equilibrium conditions. It is also found that the solar ratio of the abundances of ${}^{92}$Mo and ${}^{94}$Mo could be reproduced within uncertainties.
The recently discovered phosphorus-rich stars pose a challenge to stellar evolution and nucleosynthesis theory, as none of the existing models can explain their extremely peculiar chemical abundances pattern. Apart from the large phosphorus enhanceme nt, such stars also show enhancement in other light (O, Mg, Si, Al) and heavy (e.g., Ce) elements. We have obtained high-resolution optical spectra of two optically bright phosphorus-rich stars (including a new P-rich star), for which we have deter-mined a larger number of elemental abundances (from C to Pb). We confirm the unusual light-element abundance pattern with very large enhancements of Mg, Si, Al, and P, and possibly some Cu enhancement, but the spectra of the new P-rich star is the only one to reveal some C(+N) enhancement.When compared to other appropriate metal-poor and neutron-capture enhanced stars, the two P-rich stars show heavy-element overabundances similar to low neutron density s-process nucleosynthesis,with high first- (Sr, Y, Zr) and second-peak (Ba, La, Ce, Nd) element enhancements (even some Pb enhancement in one star) and a negative [Rb/Sr] ratio. However, this s-process is distinct from the one occurring in asymptotic giant branch (AGB) stars. The notable distinctions encompass larger[Ba/La] and lower Eu and Pb than their AGB counterparts. Our observations should guide stellar nucleosynthesis theoreticians and observers to identify the P-rich star progenitor, which represents anew site for s-process nucleosynthesis, with important implications for the chemical evolution of our Galaxy.
117 - J. Isern , E. Bravo , 2017
Type Ia supernovae are thought to be the outcome of the thermonuclear explosion of a carbon/oxygen white dwarf in a close binary system. Their optical light curve is powered by thermalized gamma-rays produced by the radioactive decay of 56Ni, the mos t abundant isotope present in the debris. The maximum and the shape of the light curve strongly depends on the total amount and distribution of this freshly synthesized isotope, as well as on the velocity and density distribution of the ejecta. Gamma-rays escaping the ejecta have the advantage of their lower interaction with the ejecta, the possibility to distinguish among isotopes and the relative simplicity of their transport modelling, and can be used as a diagnostic tool for studying the structure of the exploding star and the characteristics of the explosion, as it has been proved in the case of SN2014J.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا