ﻻ يوجد ملخص باللغة العربية
The recently discovered phosphorus-rich stars pose a challenge to stellar evolution and nucleosynthesis theory, as none of the existing models can explain their extremely peculiar chemical abundances pattern. Apart from the large phosphorus enhancement, such stars also show enhancement in other light (O, Mg, Si, Al) and heavy (e.g., Ce) elements. We have obtained high-resolution optical spectra of two optically bright phosphorus-rich stars (including a new P-rich star), for which we have deter-mined a larger number of elemental abundances (from C to Pb). We confirm the unusual light-element abundance pattern with very large enhancements of Mg, Si, Al, and P, and possibly some Cu enhancement, but the spectra of the new P-rich star is the only one to reveal some C(+N) enhancement.When compared to other appropriate metal-poor and neutron-capture enhanced stars, the two P-rich stars show heavy-element overabundances similar to low neutron density s-process nucleosynthesis,with high first- (Sr, Y, Zr) and second-peak (Ba, La, Ce, Nd) element enhancements (even some Pb enhancement in one star) and a negative [Rb/Sr] ratio. However, this s-process is distinct from the one occurring in asymptotic giant branch (AGB) stars. The notable distinctions encompass larger[Ba/La] and lower Eu and Pb than their AGB counterparts. Our observations should guide stellar nucleosynthesis theoreticians and observers to identify the P-rich star progenitor, which represents anew site for s-process nucleosynthesis, with important implications for the chemical evolution of our Galaxy.
We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo (CASH) Project. Its spectroscopic stellar parameters are Teff = 486
We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement w
We study the abundance distributions of a sample of metal-rich barium stars provided by Pereira et al. (2011) to investigate the s- and r-process nucleosynthesis in the metal-rich environment. We compared the theoretical results predicted by a parame
Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal- rich ([Fe/H]~ -1) stars that suggested a top-light i
S stars are late-type giants that are transition objects between M-type stars and carbon stars on the asymptotic giant branch (AGB). They are classified into two types: intrinsic or extrinsic, based on the presence or absence of technetium (Tc). The