ﻻ يوجد ملخص باللغة العربية
We compute the one-loop beta functions of the cosmological constant, Newtons constant and the topological mass in topologically massive supergravity in three dimensions. We use a variant of the proper time method supplemented by a simple choice of cutoff function. We find that the dimensionless coefficient of the Chern-Simons term, $ u$, has vanishing beta function. The flow of the cosmological constant and Newtons constant depends on $ u$; we study analytically the structure of the flow and its fixed points in the limits of small and large $ u$.
We find the general fully non-linear solution of topologically massive supergravity admitting a Killing spinor. It is of plane-wave type, with a null Killing vector field. Conversely, we show that all solutions with a null Killing vector are supersym
We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell su
We discuss the formulation of cosmological topologically massive (simple) supergravity theory in three-dimensional Riemann-Cartan space-times. We use the language of exterior differential forms and the properties of Majorana spinors on 3-dimensional
A Higgs mechanism for Abelian theories over non-trivial background flat connections is proposed. It is found that the mass generated for the spin 1 excitation is the same as the one obtained from the standard Higgs mechanism over trivial backgrounds,
The framework of exceptional field theory is extended by introducing consistent deformations of its generalised Lie derivative. For the first time, massive type IIA supergravity is reproduced geometrically as a solution of the section constraint. Thi