ﻻ يوجد ملخص باللغة العربية
We find the general fully non-linear solution of topologically massive supergravity admitting a Killing spinor. It is of plane-wave type, with a null Killing vector field. Conversely, we show that all solutions with a null Killing vector are supersymmetric for one or the other choice of sign for the Chern-Simons coupling constant mu. If mu does not take the critical value mu=pm 1, these solutions are asymptotically regular on a Poincare patch, but do not admit a smooth global compactification with boundary S^1timesR. In the critical case, the solutions have a logarithmic singularity on the boundary of the Poincare patch. We derive a Nester-Witten identity, which allows us to identify the associated charges, but we conclude that the presence of the Chern-Simons term prevents us from making a statement about their positivity. The Nester-Witten procedure is applied to the BTZ black hole.
We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell su
We compute the one-loop beta functions of the cosmological constant, Newtons constant and the topological mass in topologically massive supergravity in three dimensions. We use a variant of the proper time method supplemented by a simple choice of cu
We discuss the formulation of cosmological topologically massive (simple) supergravity theory in three-dimensional Riemann-Cartan space-times. We use the language of exterior differential forms and the properties of Majorana spinors on 3-dimensional
We derive necessary and sufficient conditions for N=1 compactifications of (massive) IIA supergravity to AdS(4) in the language of SU(3) structures. We find new solutions characterized by constant dilaton and nonzero fluxes for all form fields. All f
In four spacetime dimensions, all ${cal N} =1$ supergravity-matter systems can be formulated in the so-called $mathsf{U}(1)$ superspace proposed by Howe in 1981. This paper is devoted to the study of those geometric structures which characterise a ba