ترغب بنشر مسار تعليمي؟ اضغط هنا

A dispersive nanoSQUID magnetometer for ultra-low noise, high bandwidth flux detection

143   0   0.0 ( 0 )
 نشر من قبل Eli Levenson-Falk
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a dispersive nanoSQUID magnetometer comprised of two variable thickness aluminum weak-link Josephson junctions shunted in parallel with an on-chip capacitor. This arrangement forms a nonlinear oscillator with a tunable 4-8 GHz resonant frequency with a quality factor Q = 30 when coupled directly to a 50 $Omega$ transmission line. In the presence of a near-resonant microwave carrier signal, a low frequency flux input generates sidebands that are readily detected using microwave reflectometry. If the carrier excitation is sufficiently strong then the magnetometer also exhibits parametric gain, resulting in a minimum effective flux noise of 30 n$Phi_0$/Hz$^{1/2}$ with 20 MHz of instantaneous bandwidth. If the magnetometer is followed with a near quantum-noise-limited Josephson parametric amplifier, we can increase the bandwidth to 60 MHz without compromising sensitivity. This combination of high sensitivity and wide bandwidth with no on-chip dissipation makes this device ideal for local sensing of spin dynamics, both classical and quantum.



قيم البحث

اقرأ أيضاً

We demonstrate high-contrast state detection of a superconducting flux qubit. Detection is realized by probing the microwave transmission of a nonlinear resonator, based on a SQUID. Depending on the driving strength of the resonator, the detector can be operated in the monostable or the bistable mode. The bistable operation combines high-sensitivity with intrinsic latching. The measured contrast of Rabi oscillations is as high as 87 %; of the missing 13 %, only 3 % is unaccounted for. Experiments involving two consecutive detection pulses are consistent with preparation of the qubit state by the first measurement.
Superconducting quantum interference devices (SQUIDs) are among the most sensitive detectors for out-of-plane magnetic field components. However, due to their periodic response with short modulation period $M = 1 Phi_0$, determined by the magnetic fl ux quantum $Phi_0 approx 2.068times 10^{-15},mathrm{Wb}$, it is difficult to infer the value of the magnetic flux unambiguously, especially in case the magnetic flux enclosed in the SQUID loop changes by many flux quanta. Here, we demonstrate that by introducing a second degree of freedom in the form of a second SQUID, we substantially enhance the modulation period $M$ of our device without sacrificing sensitivity. As a proof of concept, we implement our idea by embedding two asymmetric direct current SQUIDs into a common tank circuit. By measuring the reflection coefficient of the device, we extract the two lowest energy eigenfrequencies as a function of the external magnetic flux created by a superconducting field coil, from which we experimentally deduce a modulation period $M geq 15 Phi_0$, as well as the magnetic offset-field $B_0 = 22,mathrm{nT}$ present in our experiment.
A general method for directly measuring the low-frequency flux noise (below 10 Hz) in compound Josephson junction superconducting flux qubits has been used to study a series of 85 devices of varying design. The variation in flux noise across sets of qubits with identical designs was observed to be small. However, the levels of flux noise systematically varied between qubit designs with strong dependence upon qubit wiring length and wiring width. Furthermore, qubits fabricated above a superconducting ground plane yielded lower noise than qubits without such a layer. These results support the hypothesis that localized magnetic impurities in the vicinity of the qubit wiring are a key source of low frequency flux noise in superconducting devices.
72 - F. T. Vasko 2017
We study a superconducting transmission line (TL) formed by distributed LC oscillators and excited by external magnetic fluxes which are aroused from random magnetization (A) placed in substrate or (B) distributed at interfaces of a two-wire TL. Low- frequency dynamics of a random magnetic field is described based on the diffusion Langevin equation with a short-range source caused by (a) random amplitude or (b) gradient of magnetization. For a TL modeled as a two-port network with open and shorted ends, the effective magnetic flux at the open end has non-local dependency on noise distribution along the TL. The flux-flux correlation function is evaluated and analyzed for the regimes (Aa), (Ab). (Ba), and (Bb). Essential frequency dispersion takes place around the inverse diffusion time of random flux along the TL. Typically, noise effect increases with size faster than the area of TL. The flux-flux correlator can be verified both via the population relaxation rate of the qubit, which is formed by the Josephson junction shunted by the TL with flux noises, and via random voltage at the open end of the TL.
We have investigated decoherence in Josephson-junction flux qubits. Based on the measurements of decoherence at various bias conditions, we discriminate contributions of different noise sources. In particular, we present a Gaussian decay function of the echo signal as evidence of dephasing due to $1/f$ flux noise whose spectral density is evaluated to be about $(10^{-6} Phi_0)^2$/Hz at 1 Hz. We also demonstrate that at an optimal bias condition where the noise sources are well decoupled the coherence observed in the echo measurement is mainly limited by energy relaxation of the qubit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا