ﻻ يوجد ملخص باللغة العربية
Superconducting quantum interference devices (SQUIDs) are among the most sensitive detectors for out-of-plane magnetic field components. However, due to their periodic response with short modulation period $M = 1 Phi_0$, determined by the magnetic flux quantum $Phi_0 approx 2.068times 10^{-15},mathrm{Wb}$, it is difficult to infer the value of the magnetic flux unambiguously, especially in case the magnetic flux enclosed in the SQUID loop changes by many flux quanta. Here, we demonstrate that by introducing a second degree of freedom in the form of a second SQUID, we substantially enhance the modulation period $M$ of our device without sacrificing sensitivity. As a proof of concept, we implement our idea by embedding two asymmetric direct current SQUIDs into a common tank circuit. By measuring the reflection coefficient of the device, we extract the two lowest energy eigenfrequencies as a function of the external magnetic flux created by a superconducting field coil, from which we experimentally deduce a modulation period $M geq 15 Phi_0$, as well as the magnetic offset-field $B_0 = 22,mathrm{nT}$ present in our experiment.
We describe a dispersive nanoSQUID magnetometer comprised of two variable thickness aluminum weak-link Josephson junctions shunted in parallel with an on-chip capacitor. This arrangement forms a nonlinear oscillator with a tunable 4-8 GHz resonant fr
We have designed, fabricated and operated a scalable system for applying independently programmable time-independent, and limited time-dependent flux biases to control superconducting devices in an integrated circuit. Here we report on the operation
Detecting spatial and temporal information of individual photons by using single-photon-detector (SPD) arrays is critical to applications in spectroscopy, communication, biological imaging, astronomical observation, and quantum-information processing
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Non-reciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor mi
We present a highly sensitive miniaturized cavity-enhanced room-temperature magnetic-field sensor based on nitrogen-vacancy (NV) centers in diamond. The magnetic resonance signal is detected by probing absorption on the 1042,nm spin-singlet transitio