ﻻ يوجد ملخص باللغة العربية
For $N$-point best-packing configurations $omega_N$ on a compact metric space $(A,rho)$, we obtain estimates for the mesh-separation ratio $gamma(omega_N,A)$, which is the quotient of the covering radius of $omega_N$ relative to $A$ and the minimum pairwise distance between points in $omega_N$. For best-packing configurations $omega_N$ that arise as limits of minimal Riesz $s$-energy configurations as $sto infty$, we prove that $gamma(omega_N,A)le 1$ and this bound can be attained even for the sphere. In the particular case when N=5 on $S^2$ with $rho$ the Euclidean metric, we prove our main result that among the infinitely many 5-point best-packing configurations there is a unique configuration, namely a square-base pyramid $omega_5^*$, that is the limit (as $sto infty$) of 5-point $s$-energy minimizing configurations. Moreover, $gamma(omega_5^*,S^2)=1$.
In terms of the minimal $N$-point diameter $D_d(N)$ for $R^d,$ we determine, for a class of continuous real-valued functions $f$ on $[0,+infty],$ the $N$-point $f$-best-packing constant $min{f(|x-y|), :, x,yin R^d}$, where the minimum is taken over p
We investigate the asymptotic behavior, as $N$ grows, of the largest minimal pairwise distance of $N$ points restricted to an arbitrary compact rectifiable set embedded in Euclidean space, and we find the limit distribution of such optimal configurat
For a compact set A in Euclidean space we consider the asymptotic behavior of optimal (and near optimal) N-point configurations that minimize the Riesz s-energy (corresponding to the potential 1/t^s) over all N-point subsets of A, where s>0. For a la
Utilizing frameworks developed by Delsarte, Yudin and Levenshtein, we deduce linear programming lower bounds (as $Nto infty$) for the Riesz energy of $N$-point configurations on the $d$-dimensional unit sphere in the so-called hypersingular case; i.e
Observations suggest that configurations of points on a sphere that are stable with respect to a Riesz potential distribute points uniformly over the sphere. Further, these stable configurations have a local structure that is largely hexagonal. Minim