ﻻ يوجد ملخص باللغة العربية
We study the geometry of infinitely presented groups satisfying the small cancelation condition C(1/8), and define a standard decomposition (called the criss-cross decomposition) for the elements of such groups. We use it to prove the Rapid Decay property for groups with the stronger small cancelation property C(1/10). As a consequence, the Metric Approximation Property holds for the reduced C*-algebra and for the Fourier algebra of such groups. Our method further implies that the kernel of the comparison map between the bounded and the usual group cohomology in degree 2 has a basis of power continuum. The present work can be viewed as a first non-trivial step towards a systematic investigation of direct limits of hyperbolic groups.
We prove that all invariant random subgroups of the lamplighter group $L$ are co-sofic. It follows that $L$ is permutation stable, providing an example of an infinitely presented such a group. Our proof applies more generally to all permutational wre
We construct a finitely presented group with infinitely many non-homeomorphic asymptotic cones. We also show that the existence of cut points in asymptotic cones of finitely presented groups does, in general, depend on the choice of scaling constants and ultrafilters.
Let Gamma be a discrete group satisfying the rapid decay property with respect to a length function which is conditionally negative. Then the reduced C*-algebra of Gamma has the metric approximation property. The central point of our proof is an ob
We generalize a version of small cancellation theory to the class of acylindrically hyperbolic groups. This class contains many groups which admit some natural action on a hyperbolic space, including non-elementary hyperbolic and relatively hyperboli
We generalize Gruber--Sistos construction of the coned--off graph of a small cancellation group to build a partially ordered set $mathcal{TC}$ of cobounded actions of a given small cancellation group whose smallest element is the action on the Gruber