ترغب بنشر مسار تعليمي؟ اضغط هنا

Finitely presented groups with infinitely many non-homeomorphic asymptotic cones

181   0   0.0 ( 0 )
 نشر من قبل Abderezak Ould Houcine
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a finitely presented group with infinitely many non-homeomorphic asymptotic cones. We also show that the existence of cut points in asymptotic cones of finitely presented groups does, in general, depend on the choice of scaling constants and ultrafilters.



قيم البحث

اقرأ أيضاً

The goal of this article is to study results and examples concerning finitely presented covers of finitely generated amenable groups. We collect examples of groups $G$ with the following properties: (i) $G$ is finitely generated, (ii) $G$ is amenable , e.g. of intermediate growth, (iii) any finitely presented group $E$ with a quotient isomorphic to $G$ contains non-abelian free subgroups, or the stronger (iii) any finitely presented group with a quotient isomorphic to $G$ is large.
We propose a numerical method for studying the cogrowth of finitely presented groups. To validate our numerical results we compare them against the corresponding data from groups whose cogrowth series are known exactly. Further, we add to the set of such groups by finding the cogrowth series for Baumslag-Solitar groups $mathrm{BS}(N,N) = < a,b | a^N b = b a^N >$ and prove that their cogrowth rates are algebraic numbers.
172 - Mark Sapir 2018
The isoperimeric spectrum consists of all real positive numbers $alpha$ such that $O(n^alpha)$ is the Dehn function of a finitely presented group. In this note we show how a recent result of Olshanskii completes the description of the isoperimetric s pectrum modulo the celebrated Computer Science conjecture (and one of the seven Millennium Problems) $mathbf{P=NP}$ and even a formally weaker conjecture.
We exhibit explicit infinite families of finitely presented, Kazhdan, simple groups that are pairwise not measure equivalent. These groups are lattices acting on products of buildings. We obtain the result by studying vanishing and non-vanishing of their $L^2$-Betti numbers.
142 - Wenhao Wang 2020
In this paper, we compute an upper bound for the Dehn function of a finitely presented metabelian group. In addition, we prove that the same upper bound works for the relative Dehn function of a finitely generated metabelian group. We also show that every wreath product of a free abelian group of finite rank with a finitely generated abelian group can be embedded into a metabelian group with exponential Dehn function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا