ﻻ يوجد ملخص باللغة العربية
Coincidence Site Lattices (CSLs) are a well established tool in the theory of grain boundaries. For several lattices up to dimension $d=4$, the CSLs are known explicitly as well as their indices and multiplicity functions. Many of them share a particular property: their multiplicity functions are multiplicative. We show how multiplicativity is connected to certain decompositions of CSLs and the corresponding coincidence rotations and present some criteria for multiplicativity. In general, however, multiplicativity is violated, while supermultiplicativity still holds.
We consider the symmetries of coincidence site lattices of 3-dimensional cubic lattices. This includes the discussion of the symmetry groups and the Bravais classes of the CSLs. We derive various criteria and necessary conditions for symmetry operati
The groups of similarity and coincidence rotations of an arbitrary lattice L in d-dimensional Euclidean space are considered. It is shown that the group of similarity rotations contains the coincidence rotations as a normal subgroup. Furthermore, the
We show that an approximate lattice in a nilpotent Lie group admits a relatively dense subset of central $(1-epsilon)$-Bragg peaks for every $epsilon > 0$. For the Heisenberg group we deduce that the union of horizontal and vertical $(1-epsilon)$-Bra
We consider connections between similar sublattices and coincidence site lattices (CSLs), and more generally between similar submodules and coincidence site modules of general (free) $mathbb{Z}$-modules in $mathbb{R}^d$. In particular, we generalis
The Whitney extension theorem is a classical result in analysis giving a necessary and sufficient condition for a function defined on a closed set to be extendable to the whole space with a given class of regularity. It has been adapted to several se