ﻻ يوجد ملخص باللغة العربية
We consider connections between similar sublattices and coincidence site lattices (CSLs), and more generally between similar submodules and coincidence site modules of general (free) $mathbb{Z}$-modules in $mathbb{R}^d$. In particular, we generalise results obtained by S. Glied and M. Baake [1,2] on similarity and coincidence isometries of lattices and certain lattice-like modules called $mathcal{S}$-modules. An important result is that the factor group $mathrm{OS}(M)/mathrm{OC}(M)$ is Abelian for arbitrary $mathbb{Z}$-modules $M$, where $mathrm{OS}(M)$ and $mathrm{OC}(M)$ are the groups of similar and coincidence isometries, respectively. In addition, we derive various relations between the indices of CSLs and their corresponding similar sublattices. [1] S. Glied, M. Baake, Similarity versus coincidence rotations of lattices, Z. Krist. 223, 770--772 (2008). DOI: 10.1524/zkri.2008.1054 [2] S. Glied, Similarity and coincidence isometries for modules, Can. Math. Bull. 55, 98--107 (2011). DOI: 10.4153/CMB-2011-076-x
The Lie algebra of vector fields on $R^m$ acts naturally on the spaces of differential operators between tensor field modules. Its projective subalgebra is isomorphic to $sl_{m+1}$, and its affine subalgebra is a maximal parabolic subalgebra of the p
In the present popular science paper we determine when a square can be dissected into rectangles similar to a given rectangle. The approach to the question is based on a physical interpretation using electrical networks. Only secondary school background is assumed in the paper.
Coincidence Site Lattices (CSLs) are a well established tool in the theory of grain boundaries. For several lattices up to dimension $d=4$, the CSLs are known explicitly as well as their indices and multiplicity functions. Many of them share a partic
We consider the symmetries of coincidence site lattices of 3-dimensional cubic lattices. This includes the discussion of the symmetry groups and the Bravais classes of the CSLs. We derive various criteria and necessary conditions for symmetry operati
We provide explicit bounds on the difference of heights of isogenous Drinfeld modules. We derive a finiteness result in isogeny classes. In the rank 2 case, we also obtain an explicit upper bound on the size of the coefficients of modular polynomials attached to Drinfeld modules.