ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck Intermediate Results. XI: The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies

196   0   0.0 ( 0 )
 نشر من قبل J. A. Rubino-Martin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo mass conversion using realistic mock catalogues based on the Millennium Simulation. Applying a multi-frequency matched filter to the Planck data for each LBG, and averaging the results in bins of stellar mass, we measure the mean SZ signal down to $M_astsim 2times 10^{11} Msolar$, with a clear indication of signal at even lower stellar mass. We derive the scaling relation between SZ signal and halo mass by assigning halo properties from our mock catalogues to the real LBGs and simulating the Planck observation process. This relation shows no evidence for deviation from a power law over a halo mass range extending from rich clusters down to $M_{500}sim 2times 10^{13} Msolar$, and there is a clear indication of signal down to $M_{500}sim 4times 10^{12} Msolar$. Plancks SZ detections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with Malmquist bias effects in the X-ray sample.



قيم البحث

اقرأ أيضاً

We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal D_A^2 Y for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. H ydrostatic X-ray masses are derived from XMM-Newton archive data and the SZ effect signal is measured from Planck all-sky survey data. We find an M_WL-D_A^2 Y relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R_500 are on average ~ 20 per cent larger than the corresponding weak lensing masses, at odds with expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods, and, for the present sample, the mass discrepancy and difference in mass concentration is especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations.
By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift $zapprox 0.1$. We estimate the pa irwise momentum of the kSZ temperature fluctuations at the positions of the CGC (Central Galaxy Catalogue) samples extracted from Sloan Digital Sky Survey (DR7) data. For the foreground-cleaned maps, we find $1.8$-$2.5sigma$ detections of the kSZ signal, which are consistent with the kSZ evidence found in individual Planck raw frequency maps, although lower than found in the WMAP-9yr W band ($3.3sigma$). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a $3.0$-$3.7$$sigma$ detection of the peculiar motion of extended gas on Mpc scales, in flows correlated up to distances of 80-100 $h^{-1}$ Mpc. Both the pairwise momentum estimates and kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of $> 1$ Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydro simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find $tau_T=(1.4pm0.5)times 10^{-4}$; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal SZ observations.
The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Plancks wide angular scale and frequency coverage, together with its high sensitivity, allow a detailed study of this large object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure, which correlates well with the morphology observed from X-rays, but extends beyond the observed X-ray signal. We find a good agreement between the SZ signal (or Compton paranmeter, y_c) observed by Planck and the expected signal inferred from X-ray observations and simple analytical models. Due to its proximity to us, the gas beyond the virial radius can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. We study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusive warm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions.
We present precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z <0.5) detected at high signal-to-noise in the first Planck all-sky dataset. The sample spans approximately a decade in total mass, 10^14 < M_500 < 10^15, where M_500 is the mass corresponding to a total density contrast of 500. Combining these high quality Planck measurements with deep XMM-Newton X-ray data, we investigate the relations between D_A^2 Y_500, the integrated Compton parameter due to the SZ effect, and the X-ray-derived gas mass M_g,500, temperature T_X, luminosity L_X, SZ signal analogue Y_X,500 = M_g,500 * T_X, and total mass M_500. After correction for the effect of selection bias on the scaling relations, we find results that are in excellent agreement with both X-ray predictions and recently-published ground-based data derived from smaller samples. The present data yield an exceptionally robust, high-quality local reference, and illustrate Plancks unique capabilities for all-sky statistical studies of galaxy clusters.
Measurements of the total amount of stars locked up in galaxies as a function of host halo mass contain key clues about the efficiency of processes that regulate star formation. We derive the total stellar mass fraction f_star as a function of halo m ass M500c from z=0.2 to z=1 using two complementary methods. First, we derive f_star using a statistical Halo Occupation Distribution model jointly constrained by data from lensing, clustering, and the stellar mass function. This method enables us to probe f_star over a much wider halo mass range than with group or cluster catalogs. Second, we derive f_star at group scales using a COSMOS X-ray group catalog and we show that the two methods agree to within 30%. We quantify the systematic uncertainty on f_star using abundance matching methods and we show that the statistical uncertainty on f_star (~10%) is dwarfed by systematic uncertainties associated with stellar mass measurements (~45% excluding IMF uncertainties). Assuming a Chabrier IMF, we find 0.012<f_star<0.025 at M500c=10^13 Msun and 0.0057<f_star<0.015 at M500c=10^14 Msun. These values are significantly lower than previously published estimates. We investigate the cause of this difference and find that previous work has overestimated f_star due to a combination of inaccurate stellar mass estimators and/or because they have assumed that all galaxies in groups are early type galaxies with a constant mass-to-light ratio. Contrary to previous claims, our results suggest that the mean value of f_star is always significantly lower than f_gas for halos above 10^13 Msun. Combining our results with recently published gas mas fractions, we find a shortfall in f_star+f_gas at R500c compared to the cosmic mean. This shortfall varies with halo mass and becomes larger towards lower halos masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا