ترغب بنشر مسار تعليمي؟ اضغط هنا

The integrated stellar content of dark matter halos

151   0   0.0 ( 0 )
 نشر من قبل Alexie Leauthaud
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of the total amount of stars locked up in galaxies as a function of host halo mass contain key clues about the efficiency of processes that regulate star formation. We derive the total stellar mass fraction f_star as a function of halo mass M500c from z=0.2 to z=1 using two complementary methods. First, we derive f_star using a statistical Halo Occupation Distribution model jointly constrained by data from lensing, clustering, and the stellar mass function. This method enables us to probe f_star over a much wider halo mass range than with group or cluster catalogs. Second, we derive f_star at group scales using a COSMOS X-ray group catalog and we show that the two methods agree to within 30%. We quantify the systematic uncertainty on f_star using abundance matching methods and we show that the statistical uncertainty on f_star (~10%) is dwarfed by systematic uncertainties associated with stellar mass measurements (~45% excluding IMF uncertainties). Assuming a Chabrier IMF, we find 0.012<f_star<0.025 at M500c=10^13 Msun and 0.0057<f_star<0.015 at M500c=10^14 Msun. These values are significantly lower than previously published estimates. We investigate the cause of this difference and find that previous work has overestimated f_star due to a combination of inaccurate stellar mass estimators and/or because they have assumed that all galaxies in groups are early type galaxies with a constant mass-to-light ratio. Contrary to previous claims, our results suggest that the mean value of f_star is always significantly lower than f_gas for halos above 10^13 Msun. Combining our results with recently published gas mas fractions, we find a shortfall in f_star+f_gas at R500c compared to the cosmic mean. This shortfall varies with halo mass and becomes larger towards lower halos masses.



قيم البحث

اقرأ أيضاً

We combine information from the clustering of HI galaxies in the 100% data release of the Arecibo Legacy Fast ALFA survey (ALFALFA), and from the HI content of optically-selected galaxy groups found in the Sloan Digital Sky Survey (SDSS) to constrain the relation between halo mass $M_h$ and its average total HI mass content $M_{rm HI}$. We model the abundance and clustering of neutral hydrogen through a halo-model-based approach, parametrizing the $M_{rm HI}(M_h)$ relation as a power law with an exponential mass cutoff. To break the degeneracy between the amplitude and low-mass cutoff of the $M_{rm HI}(M_h)$ relation, we also include a recent measurement of the cosmic HI abundance from the $alpha$.100 sample. We find that all datasets are consistent with a power-law index $alpha=0.44pm 0.08$ and a cutoff halo mass $log_{10}M_{rm min}/(h^{-1}M_odot)=11.27^{+0.24}_{-0.30}$. We compare these results with predictions from state-of-the-art magneto-hydrodynamical simulations, and find both to be in good qualitative agreement, although the data favours a significantly larger cutoff mass that is consistent with the higher cosmic HI abundance found in simulations. Both data and simulations seem to predict a similar value for the HI bias ($b_{rm HI}=0.875pm0.022$) and shot-noise power ($P_{rm SN}=92^{+20}_{-18},[h^{-1}{rm Mpc}]^3$) at redshift $z=0$.
136 - Ying Zu , Rachel Mandelbaum 2017
Recent studies suggest that the quenching properties of galaxies are correlated over several mega-parsecs. The large-scale galactic conformity phenomenon around central galaxies has been regarded as a potential signature of galaxy assembly bias or pr e-heating, both of which interpret conformity as a result of direct environmental effects acting on galaxy formation. Building on the iHOD halo quenching framework developed in Zu & Mandelbaum (2015, 2016), we discover that our fiducial halo mass quenching model, without any galaxy assembly bias, can successfully explain the overall environmental dependence and the conformity of galaxy colours in SDSS, as measured by the mark correlation functions of galaxy colours and the red galaxy fractions around isolated primaries, respectively. Our fiducial iHOD halo quenching mock also correctly predicts the differences in the spatial clustering and galaxy-galaxy lensing signals between the more vs. less red galaxy subsamples, split by the red-sequence ridge-line at fixed stellar mass. Meanwhile, models that tie galaxy colours fully or partially to halo assembly bias have difficulties in matching all these observables simultaneously. Therefore, we demonstrate that the observed environmental dependence of galaxy colours can be naturally explained by the combination of 1) halo quenching and 2) the variation of halo mass function with environment --- an indirect environmental effect mediated by two separate physical processes.
We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo mass conversion using realistic mock catalogues based on the Millennium Simulation. Applying a multi-frequency matched filter to the Planck data for each LBG, and averaging the results in bins of stellar mass, we measure the mean SZ signal down to $M_astsim 2times 10^{11} Msolar$, with a clear indication of signal at even lower stellar mass. We derive the scaling relation between SZ signal and halo mass by assigning halo properties from our mock catalogues to the real LBGs and simulating the Planck observation process. This relation shows no evidence for deviation from a power law over a halo mass range extending from rich clusters down to $M_{500}sim 2times 10^{13} Msolar$, and there is a clear indication of signal down to $M_{500}sim 4times 10^{12} Msolar$. Plancks SZ detections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with Malmquist bias effects in the X-ray sample.
Dissipative dark matter self-interactions can affect halo evolution and change its structure. We perform a series of controlled N-body simulations to study impacts of the dissipative interactions on halo properties. The interplay between gravitationa l contraction and collisional dissipation can significantly speed up the onset of gravothermal collapse, resulting in a steep inner density profile. For reasonable choices of model parameters controlling the dissipation, the collapse timescale can be a factor of 10-100 shorter than that predicted in purely elastic self-interacting dark matter. The effect is maximized when energy loss per collision is comparable to characteristic kinetic energy of dark matter particles in the halo. Our simulations provide guidance for testing the dissipative nature of dark matter with astrophysical observations.
406 - Ying Zu , Rachel Mandelbaum 2015
We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in SDSS. Building on the iHOD framework developed by Zu & Mandelbaum (2015 a), we consider two quenching scenarios: 1) a halo quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and 2) a hybrid quenching model in which the quenched fraction of galaxies depends on their stellar mass while the satellite quenching has an extra dependence on halo mass. The two best-fit models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above $10^{11} M_odot/h^2$. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed $M_*$, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (~$1.5times10^{12} Modot/h^2$), hinting at a uniform quenching mechanism for both, e.g., the virial shock-heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter halos rather than the properties of their stellar components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا