ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimates for some Weighted Bergman Projections

253   0   0.0 ( 0 )
 نشر من قبل Philippe Charpentier
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate the regularity properties of weighted Bergman projections for smoothly bounded pseudo-convex domains of finite type in $mathbb{C}^{n}$. The main result is obtained for weights equal to a non negative rational power of the absolute value of a special defining function $rho$ of the domain: we prove (weighted) Sobolev-$L^{p}$ and Lipchitz estimates for domains in $mathbb{C}^{2}$ (or, more generally, for domains having a Levi form of rank $geq n-2$ and for decoupled domains) and for convex domains. In particular, for these defining functions, we generalize results obtained by A. Bonami & S. Grellier and D. C. Chang & B. Q. Li. We also obtain a general (weighted) Sobolev-$L^{2}$ estimate.



قيم البحث

اقرأ أيضاً

In this note we show that the weighted $L^{2}$-Sobolev estimates obtained by P. Charpentier, Y. Dupain & M. Mounkaila for the weighted Bergman projection of the Hilbert space $L^{2}left(Omega,dmu_{0}right)$ where $Omega$ is a smoothly bounded pseudoc onvex domain of finite type in $mathbb{C}^{n}$ and $mu_{0}=left(-rho_{0}right)^{r}dlambda$, $lambda$ being the Lebesgue measure, $rinmathbb{Q}_{+}$ and $rho_{0}$ a special defining function of $Omega$, are still valid for the Bergman projection of $L^{2}left(Omega,dmuright)$ where $mu=left(-rhoright)^{r}dlambda$, $rho$ being any defining function of $Omega$. In fact a stronger directional Sobolev estimate is established. Moreover similar generalizations are obtained for weighted $L^{p}$-Sobolev and lipschitz estimates in the case of pseudoconvex domain of finite type in $mathbb{C}^{2}$ and for some convex domains of finite type.
We establish a weighted inequality for the Bergman projection with matrix weights for a class of pseudoconvex domains. We extend a result of Aleman-Constantin and obtain the following estimate for the weighted norm of $P$: [|P|_{L^2(Omega,W)}leq C(ma thcal B_2(W))^{{2}}.] Here $mathcal B_2(W)$ is the Bekolle-Bonami constant for the matrix weight $W$ and $C$ is a constant that is independent of the weight $W$ but depends upon the dimension and the domain.
299 - Daniel H. Luecking 2014
We extend our work on nonseparated interpolating sequences, originally developed for Bergman spaces with weights of the form $(1 - |z|^2)^alpha$, to more general weights.
328 - Jordi Pau , Ruhan Zhao , 2015
We introduce a family of weighted BMO and VMO spaces for the unit ball and use them to characterize bounded and compact Hankel operators between different Bergman spaces. In particular, we resolve two problems left open by S. Janson in 1988 and R. Wallsten in 1990.
77 - Haiqing Xu 2019
Let $Omega subset mbr^2$ be an internal chord-arc domain and $varphi : mbs^1 rightarrow partial Omega$ be a homeomorphism. Then there is a diffeomorphic extension $h : mbd rightarrow Omega$ of $varphi .$ We study the relationship between weighted int egrability of the derivatives of $h$ and double integrals of $varphi$ and of $varphi^{-1} .$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا