ﻻ يوجد ملخص باللغة العربية
In this note we show that the weighted $L^{2}$-Sobolev estimates obtained by P. Charpentier, Y. Dupain & M. Mounkaila for the weighted Bergman projection of the Hilbert space $L^{2}left(Omega,dmu_{0}right)$ where $Omega$ is a smoothly bounded pseudoconvex domain of finite type in $mathbb{C}^{n}$ and $mu_{0}=left(-rho_{0}right)^{r}dlambda$, $lambda$ being the Lebesgue measure, $rinmathbb{Q}_{+}$ and $rho_{0}$ a special defining function of $Omega$, are still valid for the Bergman projection of $L^{2}left(Omega,dmuright)$ where $mu=left(-rhoright)^{r}dlambda$, $rho$ being any defining function of $Omega$. In fact a stronger directional Sobolev estimate is established. Moreover similar generalizations are obtained for weighted $L^{p}$-Sobolev and lipschitz estimates in the case of pseudoconvex domain of finite type in $mathbb{C}^{2}$ and for some convex domains of finite type.
In this paper we investigate the regularity properties of weighted Bergman projections for smoothly bounded pseudo-convex domains of finite type in $mathbb{C}^{n}$. The main result is obtained for weights equal to a non negative rational power of the
We establish a weighted inequality for the Bergman projection with matrix weights for a class of pseudoconvex domains. We extend a result of Aleman-Constantin and obtain the following estimate for the weighted norm of $P$: [|P|_{L^2(Omega,W)}leq C(ma
We extend our work on nonseparated interpolating sequences, originally developed for Bergman spaces with weights of the form $(1 - |z|^2)^alpha$, to more general weights.
We introduce a family of weighted BMO and VMO spaces for the unit ball and use them to characterize bounded and compact Hankel operators between different Bergman spaces. In particular, we resolve two problems left open by S. Janson in 1988 and R. Wallsten in 1990.
Let $Omega subset mbr^2$ be an internal chord-arc domain and $varphi : mbs^1 rightarrow partial Omega$ be a homeomorphism. Then there is a diffeomorphic extension $h : mbd rightarrow Omega$ of $varphi .$ We study the relationship between weighted int