ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory for charge and orbital density-wave states in manganite La$_{0.5}$Sr$_{1.5}$MnO$_4$

113   0   0.0 ( 0 )
 نشر من قبل Zijian Yao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the high temperature phase of layered manganites, and demonstrate that the charge-orbital phase transition without magnetic order in La$_{0.5}$Sr$_{1.5}$MnO$_4$ can be understood in terms of the density wave instability. The orbital ordering is found to be induced by the nesting between segments of Fermi surface with different orbital characters. The simultaneous charge and orbital orderings are elaborated with a mean field theory. The ordered orbitals are shown to be $d_{x^2-y^2} pm d_{3z^2-r^2}$.



قيم البحث

اقرأ أيضاً

118 - D. Senff , F. Krueger , S. Scheidl 2005
The magnon dispersion in the charge, orbital and spin ordered phase in La(0.5)Sr(1.5)MnO(4) has been studied by means of inelastic neutron scattering. We find an excellent agreement with a magnetic interaction model basing on the CE-type superstructu re. The magnetic excitations are dominated by ferromagnetic exchange parameters revealing a nearly-one dimensional character at high energies. The nearest neighbor ferromagnetic interaction in La(0.5)Sr(1.5)MnO(4) is significantly larger than the one in the metallic ferromagnetically ordered manganites. The large ferromagnetic interaction in the charge/orbital ordered phase appears to be essential for the capability of manganites to switch between metallic and insulating phases.
The magnetic correlations in the charge- and orbital-ordered manganite La(0.5)Sr(1.5)MnO(4) have been studied by elastic and inelastic neutron scattering techniques. Out of the well-defined CE-type magnetic structure with the corresponding magnons a competition between CE-type and ferromagnetic fluctuations develops. Whereas ferromagnetic correlations are fully suppressed by the static CE-type order at low temperature, elastic and inelastic CE-type correlations disappear with the melting of the charge-orbital order at high temperature. In its charge-orbital disordered phase, La(0.5)Sr(1.5)MnO(4) exhibits a dispersion of ferromagnetic correlations which remarkably resembles the magnon dispersion in ferromagnetically ordered metallic perovskite manganites.
We report the first direct resonant soft x-ray scattering observations of orbital ordering. We have studied the low temperature phase of La$_{0.5}$Sr$_{1.5}$MnO$_4$, a compound that displays charge and orbital ordering. Previous claims of orbital ord ering in such materials have relied on observations at the Manganese $K$ edge. These claims have been questioned in several theoretical studies. Instead we have employed resonant soft x-ray scattering at the manganese $L_{III}$ and $L_{II}$ edges which probes the orbital ordering directly. Energy scans at constant wavevector are compared to theoretical predictions and suggest that at all temperatures there are two separate contributions to the scattering, direct orbital ordering and strong cooperative Jahn - Teller distortions of the Mn$^{3+}$ ions.
We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability is found in the orbital order. In addition, a large hysteresis is observed that is caused by phase competition between insulating charge ordered and metallic ferromagnetic states. No magnetic phase transitions are observed in contrast to bulk, confirming the unique character of the superlattice. The deviation from the commensurate orbital order can be directly related to the decrease of ordered-layer thickness that leads to a decoupling of the orbital-ordered planes along the c axis.
The frequency, temperature, and dc-bias dependence of the ac-susceptibility of a high quality single crystal of the Eu$_{0.5}$Sr$_{1.5}$MnO$_4$ layered manganite is investigated. Eu$_{0.5}$Sr$_{1.5}$MnO$_4$ behaves like a XY spin glass with a strong basal anisotropy. Dynamical and static scalings reveal a three-dimensional phase transition near $T_g$ = 18 K, and yield critical exponent values between those of Heisenberg- and Ising-like systems, albeit slightly closer to the Ising case. Interestingly, as in the latter system, the here observed rejuvenation effects are rather weak. The origin and nature of the low temperature XY spin glass state is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا