ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase competitions in epitaxial Pr$_{0.5}$Ca$_{0.5}$MnO$_3$/La$_{0.5}$Sr$_{0.5}$MnO$_3$ superlattices

192   0   0.0 ( 0 )
 نشر من قبل Hiroki Wadati
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability is found in the orbital order. In addition, a large hysteresis is observed that is caused by phase competition between insulating charge ordered and metallic ferromagnetic states. No magnetic phase transitions are observed in contrast to bulk, confirming the unique character of the superlattice. The deviation from the commensurate orbital order can be directly related to the decrease of ordered-layer thickness that leads to a decoupling of the orbital-ordered planes along the c axis.



قيم البحث

اقرأ أيضاً

231 - H. Wadati , J. Geck , E. Schierle 2011
We report the study of magnetic and orbital order in Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ epitaxial thin films grown on (LaAlO$_3$)$_{0.3}$-(SrAl$_{0.5}$Ta$_{0.5}$O$_3$)$_{0.7}$ (LSAT) (011)$_c$. In a new experimental approach, the polarization and energy dep endence of resonant soft x-ray scattering are used to reveal significant modifications of the magnetic order in the film as compared to the bulk, namely (i) a different magnetic ordering wave vector, (ii) a different magnetic easy axis and (iii) an additional magnetic reordering transition at low temperatures. These observations indicate a strong impact of the epitaxial strain on the spin order, which is mediated by the orbital degrees of freedom and which provides a promising route to tune the magnetic properties of manganite films. Our results further demonstrate that resonant soft x-ray scattering is a very suitable technique to study the magnetism in thin films, to which neutron scattering cannot easily be applied due to the small sample volume.
We report low temperature specific heat measurements of Pr$_{1-x}$Ca$_{x}$MnO$_{3}$ ($0.3leq x leq 0.5$) and La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ with and without applied magnetic field. An excess specific heat, $C^{prime}(T)$, of non-magnetic origin associ ated with charge ordering is found for all the samples. A magnetic field sufficient to induce the transition from the charge-ordered state to the ferromagnetic metallic state does not completely remove the $C^{prime}$ contribution. This suggests that the charge ordering is not completely destroyed by a melting magnetic field. In addition, the specific heat of the Pr$_{1-x}$Ca$_{x}$MnO$_{3}$ compounds exhibit a large contribution linear in temperature ($gamma T$) originating from magnetic and charge disorder.
111 - J. Sacanell , F. Parisi , P. Levy 2004
We have studied a non volatile memory effect in the mixed valent compound La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ induced by magnetic field (H). In a previous work [R.S. Freitas et al., Phys. Rev. B 65 (2002) 104403], it has been shown that the response of thi s system upon application of H strongly depends on the temperature range, related to three well differentiated regimes of phase separation occurring below 220 K. In this work we compare memory capabilities of the compound, determined following two different experimental procedures for applying H, namely zero field cooling and field cooling the sample. These results are analyzed and discussed within the scenario of phase separation.
Thin films of Pr0.5Ca0.5MnO3 manganites exhibiting charge/orbital-ordered properties with colossal magnetoresistance have been synthesized by the pulsed laser deposition technique on both (100)-SrTiO3 and (100)-LaAlO3 substrates. The effects of curre nt-induced metallic-behavior of the films are investigated as a function of the temperature and the magnetic field. Calculations based on a heat transfer model across the substrate, and our resistivity measurements reveal effects of Joule heating on charge transport over certain ranges of temperatures and magnetic fields. Our results also indicate that a nonlinear conduction, which cannot be explained by homogeneous Joule heating of the film, is observed when the material is less resistive (10-2 W.cm). The origin of this behavior is explained with a model based on local thermal instabilities associated with phase-separation mechanism and a change in the long range charge-ordered state.
126 - S. Cox , E. Rosten , J. C. Chapman 2005
We have recently argued that manganites do not possess stripes of charge order, implying that the electron-lattice coupling is weak [Phys Rev Lett textbf{94} (2005) 097202]. Here we independently argue the same conclusion based on transmission electr on microscopy measurements of a nanopatterned epitaxial film of La$_{0.5}$Ca$_{0.5}$MnO$_3$. In strain relaxed regions, the superlattice period is modified by 2-3% with respect to the parent lattice, suggesting that the two are not strongly tied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا