ﻻ يوجد ملخص باللغة العربية
We introduce various notions of rank for a symmetric tensor, namely: rank, border rank, catalecticant rank, generalized rank, scheme length, border scheme length, extension rank and smoothable rank. We analyze the stratification induced by these ranks. The mutual relations between these stratifications, allow us to describe the hierarchy among all the ranks. We show that strict inequalities are possible between rank, border rank, extension rank and catalecticant rank. Moreover we show that scheme length, generalized rank and extension rank coincide.
Given tensors $T$ and $T$ of order $k$ and $k$ respectively, the tensor product $T otimes T$ is a tensor of order $k+k$. It was recently shown that the tensor rank can be strictly submultiplicative under this operation ([Christandl-Jensen-Zuiddam]).
We explore the connection between the rank of a polynomial and the singularities of its vanishing locus. We first describe the singularity of generic polynomials of fixed rank. We then focus on cubic surfaces. Cubic surfaces with isolated singulariti
We compare the restriction to the context of weak Hopf algebras of the notion of crossed product with a Hopf algebroid introduced in cite{BB} with the notion of crossed product with a weak Hopf algebra introduced in~cite{AG}
In this paper, we seek analytically checkable necessary and sufficient condition for copositivity of a three-dimensional symmetric tensor. We first show that for a general third order three-dimensional symmetric tensor, this means to solve a quartic
The notion of optimality naturally arises in many areas of applied mathematics and computer science concerned with decision making. Here we consider this notion in the context of two formalisms used for different purposes and in different research ar