ﻻ يوجد ملخص باللغة العربية
In this paper, we seek analytically checkable necessary and sufficient condition for copositivity of a three-dimensional symmetric tensor. We first show that for a general third order three-dimensional symmetric tensor, this means to solve a quartic equation and some quadratic equations. All of them can be solved analytically. Thus, we present an analytical way to check copositivity of a third order three dimensional symmetric tensor. Then, we consider a model of vacuum stability for $mathbb{Z}_3$ scalar dark matter. This is a special fourth order three-dimensional symmetric tensor. We show that an analytically expressed necessary and sufficient condition for this model bounded from below can be given, by using a result given by Ulrich and Watson in 1994.
The strict opositivity of 4th order symmetric tensor may apply to detect vacuum stability of general scalar potential. For finding analytical expressions of (strict) opositivity of 4th order symmetric tensor, we may reduce its order to 3rd order to b
In this paper, we mainly discuss the analytic expression of exact copositivity of 4th order symmetric tensor defined by the special physical model. We first show that for the general 4th order 2-dimensional symmetric tensor, it can be transformed int
In this paper, we present an eleven invariant isotropic irreducible function basis of a third order three-dimensional symmetric tensor. This irreducible function basis is a proper subset of the Olive-Auffray minimal isotropic integrity basis of that
In particle physics, scalar potentials have to be bounded from below in order for the physics to make sense. The precise expressions of checking lower bound of scalar potentials are essential, which is an analytical expression of checking copositivit
In this paper, we mainly discuss analytical expressions of positive definiteness for a special 4th order 3-dimensional symmetric tensor defined by the constructed model for a physical phenomenon. Firstly, an analytically necessary and sufficient cond