ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave controlled efficient Raman and sub-Raman generation

164   0   0.0 ( 0 )
 نشر من قبل Pankaj Jha
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an efficient scheme for the generation and the manipulation of Raman fields in an homogeneously broadened atomic vapor in a closed three levels $Lambda$-configuration. The key concept in generating the Raman and sub-Raman fields efficiently at lower optical densities involve the microwave induced atomic coherence of the lower levels. We show explicitly that, generation efficiency of the Raman fields can be controlled by manipulating the coherences via phase and amplitude of the microwave field.



قيم البحث

اقرأ أيضاً

We report the observation of a novel nonlinear effect in the hard x-ray range. Upon illuminating Fe and Cu metal foils with intense x-ray pulses tuned near their respective K edges, photons at nearly twice the incoming photon energy are emitted. The signal rises quadratically with the incoming intensity, consistent with two-photon excitation. The spectrum of emitted high-energy photons comprises multiple Raman lines that disperse with the incident photon energy. Upon reaching the double K-shell ionization threshold, the signal strength undergoes a marked rise. Above this threshold, the lines cease dispersing, turning into orescence lines with energies much greater than obtainable by single electron transitions, and additional Raman lines appear. We attribute these processes to electron-correlation mediated multielectron transitions involving double-core hole excitation and various two-electron de-excitation processes to a final state involving one or more L and M core-holes.
126 - Bing Chen 2012
We experimentally demonstrate efficient Raman conversion to respective Stokes and anti-Stokes fields in both pulsed and continuous modes with a Rb-87 atomic vapor cell. The conversion efficiency is about 40-50% for the Stokes field and 20-30% for the anti-Stokes field, respectively. This conversion process is realized with feedback of both the Raman pump and the frequency-converted fields (Stokes or anti-Stokes). The experimental setup is very simple and can be applied easily to produce the light source with larger frequency difference using other Raman media. They may have wide applications in nonlinear optics, atomic physics, quantum optics and precise measurement.
We implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold atom electron and ion source. We achieve an efficiency of 60% averaged over the laser excitation volume with a peak efficiency of 8 2%, a 1.6 times improvement relative to incoherent pulsed-laser excitation. Using pulsed electric field ionization of the Rydberg atoms we create electron bunches with durations of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, and coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single ion source.
We report the achievement of stimulated Raman adiabatic passage (STIRAP) in the microwave frequency range between internal states of a Bose-Einstein condensate (BEC) magnetically trapped in the vicinity of an atom chip. The STIRAP protocol used in th is experiment is robust to external perturbations as it is an adiabatic transfer, and power-efficient as it involves only resonant (or quasi-resonant) processes. Taking into account the effect of losses and collisions in a non-linear Bloch equations model, we show that the maximum transfer efficiency is obtained for non-zero values of the one- and two-photon detunings, which is confirmed quantitatively by our experimental measurements.
Gray molasses is a powerful tool for sub-Doppler laser cooling of atoms to low temperatures. For alkaline atoms, this technique is commonly implemented with cooling lasers which are blue-detuned from either the D1 or D2 line. Here we show that effici ent gray molasses can be implemented on the D2 line of 40K with red-detuned lasers. We obtained temperatures of 48(2) microKelvin, which enables direct loading of 9.2(3)*10^6 atoms from a magneto-optical trap into an optical dipole trap. We support our findings by a one-dimensional model and three-dimensional numerical simulations of the optical Bloch equations which qualitatively reproduce the experimentally observed cooling effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا