ﻻ يوجد ملخص باللغة العربية
We implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold atom electron and ion source. We achieve an efficiency of 60% averaged over the laser excitation volume with a peak efficiency of 82%, a 1.6 times improvement relative to incoherent pulsed-laser excitation. Using pulsed electric field ionization of the Rydberg atoms we create electron bunches with durations of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, and coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single ion source.
We present a general formalism for describing stimulated Raman adiabatic passage in a multi-level atom. The atom is assumed to have two ground state manifolds a and b and an excited state manifold e, and the adiabatic passage is carried out by resona
We report the achievement of stimulated Raman adiabatic passage (STIRAP) in the microwave frequency range between internal states of a Bose-Einstein condensate (BEC) magnetically trapped in the vicinity of an atom chip. The STIRAP protocol used in th
We propose a technique which produces nearly complete ionization of the population of a discrete state coupled to a continuum by a two-photon transition via a lossy intermediate state whose lifetime is much shorter than the interaction duration. We s
We present an analytic description of the effects of dephasing processes on stimulated Raman adiabatic passage in a tripod quantum system. To this end, we develop an effective two-level model. Our analysis makes use of the adiabatic approximation in
In the Comment by M. Mackie textit{et al.} [arXiv: physics/0212111 v.4], the authors suggest that the molecular conversion efficiency in atom-molecule STIRAP can be improved by lowering the initial atomic density, which in turn requires longer pulse