ﻻ يوجد ملخص باللغة العربية
Mean-field theory of non-interacting disordered electron systems is widely and successfully used to describe equilibrium properties of alloys in the whole range of disorder strengths. It, however, fails to take into account effects of quantum coherence and localizing back-scattering effects when applied to transport phenomena. We present an approximate scheme extending the mean-field theory for one-electron properties in that it offers a formula for the two-particle vertex and the electrical conductivity non-perturbatively including the leading-order vertex corrections in a way that the approximation remains consistent and the conductivity non-negative in all disorder regimes.
We use the dynamical mean-field approximation to study singularities in the self-energy and a two-particle irreducible vertex induced by the metal-insulator transition of the disordered Falicov-Kimball model. We set general conditions for the existen
We study a recently introduced and exactly solvable mean-field model for the density of vibrational states $mathcal{D}(omega)$ of a structurally disordered system. The model is formulated as a collection of disordered anharmonic oscillators, with ran
Many-body localization is a fascinating theoretical concept describing the intricate interplay of quantum interference, i.e. localization, with many-body interaction induced dephasing. Numerous computational tests and also several experiments have be
In one-dimensional electronic systems with strong repulsive interactions, charge excitations propagate much faster than spin excitations. Such systems therefore have an intermediate temperature range [termed the spin-incoherent Luttinger liquid (SILL
We study quantum coherence of elastically scattered lattice fermions. We calculate vertex corrections to the electrical conductivity of electrons scattered either on thermally equilibrated or statically distributed random impurities. We demonstrate t