ﻻ يوجد ملخص باللغة العربية
We study quantum coherence of elastically scattered lattice fermions. We calculate vertex corrections to the electrical conductivity of electrons scattered either on thermally equilibrated or statically distributed random impurities. We demonstrate that the sign of the vertex corrections to the Drude conductivity is in both cases negative. Quantum coherence due to elastic back-scatterings always leads to diminution of diffusion.
Mean-field theory of non-interacting disordered electron systems is widely and successfully used to describe equilibrium properties of alloys in the whole range of disorder strengths. It, however, fails to take into account effects of quantum coheren
It is well known that conductivity of disordered metals is suppressed in the limit of low frequencies and temperatures by quantum corrections. Although predicted by theory to exist up to much higher energies, such corrections have so far been experim
We study the thermal conductivity in disordered $s$-wave superconductors. Expanding on previous works for normal metals, we develop a formalism that tackles particle diffusion as well as the weak localization (WL) and weak anti-localization (WAL) eff
We study the temperature dependence of the conductivity due to quantum interference processes for a two-dimensional disordered itinerant electron system close to a ferromagnetic quantum critical point. Near the quantum critical point, the cross-over
The electron-electron interaction quantum correction to the conductivity of the gated single quantum well InP/In$_{0.53}$Ga$_{0.47}$As heterostructures is investigated experimentally. The analysis of the temperature and magnetic field dependences of