ﻻ يوجد ملخص باللغة العربية
We present the novel, semi-automated clustering tool ASPECT for analysing voluminous archives of spectra. The heart of the program is a neural network in form of Kohonens self-organizing map. The resulting map is designed as an icon map suitable for the inspection by eye. The visual analysis is supported by the option to blend in individual object properties such as redshift, apparent magnitude, or signal-to-noise ratio. In addition, the package provides several tools for the selection of special spectral types, e.g. local difference maps which reflect the deviations of all spectra from one given input spectrum (real or artificial). ASPECT is able to produce a two-dimensional topological map of a huge number of spectra. The software package enables the user to browse and navigate through a huge data pool and helps him to gain an insight into underlying relationships between the spectra and other physical properties and to get the big picture of the entire data set. We demonstrate the capability of ASPECT by clustering the entire data pool of 0.6 million spectra from the Data Release 4 of the Sloan Digital Sky Survey (SDSS). To illustrate the results regarding quality and completeness we track objects from existing catalogues of quasars and carbon stars, respectively, and connect the SDSS spectra with morphological information from the GalaxyZoo project.
In this paper we investigate the performance of the likelihood ratio method as a tool for identifying optical and infrared counterparts to proposed radio continuum surveys with SKA precursor and pathfinder telescopes. We present a comparison of the i
Several tools have been developed in the past few years for the statistical analysis of the exoplanet search surveys, mostly using a combination of Monte-Carlo simulations or a Bayesian approach.Here we present the Quick-MESS, a grid-based, non-Monte
We review some of the scientific opportunities and technical challenges posed by the exploration of the large digital sky surveys, in the context of a Virtual Observatory (VO). The VO paradigm will profoundly change the way observational astronomy is
Current and future continuum surveys being undertaken by the new generation of radio telescopes are now poised to address many important science questions, ranging from the earliest galaxies, to the physics of nearby AGN, as well as potentially provi
In the era of vast spectroscopic surveys focusing on Galactic stellar populations, astronomers want to exploit the large quantity and good quality of data to derive their atmospheric parameters without losing precision from automatic procedures. In t