ﻻ يوجد ملخص باللغة العربية
Current and future continuum surveys being undertaken by the new generation of radio telescopes are now poised to address many important science questions, ranging from the earliest galaxies, to the physics of nearby AGN, as well as potentially providing new and unexpected discoveries. However, how to efficiently analyse the large quantities of data collected by these studies in order to maximise their scientific output remains an open question. In these proceedings we present details of the surveys module for the Broadband Radio Astronomy Tools (BRATS) software package which will combine new observations with existing multi-frequency data in order to automatically analyse and select sources based on their spectrum. We show how these methods can been applied to investigate objects observed on a variety of spatial scales, and suggest a pathway for how this can be used in the wider context of surveys and large samples.
We present a comprehensive analysis of the performance of noise-reduction (``denoising) algorithms to determine whether they provide advantages in source detection on extragalactic survey images. The methods under analysis are Perona-Malik filtering,
We report the spectral index of diffuse radio emission between 50 and 100 MHz from data collected with two implementations of the Experiment to Detect the Global EoR Signature (EDGES) low-band system. EDGES employs a wide beam zenith-pointing dipole
The well-known age-metallicity-attenuation degeneracy does not permit unique and good estimates of basic parameters of stars and stellar populations. The effects of dust can be avoided using spectral line indices, but current methods have not been ab
High-resolution optical integral field units (IFUs) are rapidly expanding our knowledge of extragalactic emission nebulae in galaxies and galaxy clusters. By studying the spectra of these objects -- which include classic HII regions, supernova remnan
The past decade has seen significant advances in cm-wave VLBI extragalactic observations due to a wide range of technical successes, including the increase in processed field-of-view and bandwidth. The future inclusion of MeerKAT into global VLBI net