ﻻ يوجد ملخص باللغة العربية
Yttrium orthosilicate (Y$_2$SiO$_5$, or YSO) has proved to be a convenient host for rare-earth ions used in demonstrations of microwave quantum memories and optical memories with microwave interfaces, and shows promise for coherent microwave--optical conversion owing to its favourable optical and spin properties. The strong coupling required by such microwave applications could be achieved using superconducting resonators patterned directly on Y$_2$SiO$_5$, and hence we investigate here the use of Y$_2$SiO$_5$ as an alternative to sapphire or silicon substrates for superconducting hybrid device fabrication. A NbN resonator with frequency 6.008 GHz and low power quality factor $Q approx 400000$ was fabricated on a Y$_2$SiO$_5$ substrate doped with isotopically enriched Nd$^{145}$. Measurements of dielectric loss yield a loss-tangent $tandelta = 4 times 10^{-6}$, comparable to sapphire. Electron spin resonance (ESR) measurements performed using the resonator show the characteristic angular dependence expected from the anisotropic Nd$^{145}$ spin, and the coupling strength between resonator and electron spins is in the high cooperativity regime ($C = 30$). These results demonstrate Y$_2$SiO$_5$ as an excellent substrate for low-loss, high-Q microwave resonators, especially in applications for coupling to optically-accessible rare earth spins.
Interfacing superconducting quantum processors, working in the GHz frequency range, with optical quantum networks and atomic qubits is a challenging task for the implementation of distributed quantum information processing as well as for quantum comm
Interfacing photonic and solid-state qubits within a hybrid quantum architecture offers a promising route towards large scale distributed quantum computing. Ideal candidates for coherent qubit interconversion are optically active spins magnetically c
The problem of coupling multiple spin ensembles through cavity photons is revisited by using PyBTM organic radicals and a high-$T_c$ superconducting coplanar resonator. An exceptionally strong coupling is obtained and up to three spin ensembles are s
We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic field (80-300 mT). Measurements exploit mode- and temperature-dependent coupling of hyperfin
Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many quantum bits can be encoded into the spin-waves of a single ensemble. W