ﻻ يوجد ملخص باللغة العربية
We prove a conjecture of Ambrus, Ball and Erd{e}lyi that equally spaced points maximize the minimum of discrete potentials on the unit circle whenever the potential is of the form sum_{k=1}^n f(d(z,z_k)), where $f:[0,pi]to [0,infty]$ is non-increasing and strictly convex and $d(z,w)$ denotes the geodesic distance between $z$ and $w$ on the circle.
We derive the complete asymptotic expansion in terms of powers of $N$ for the geodesic $f$-energy of $N$ equally spaced points on a rectifiable simple closed curve $Gamma$ in ${mathbb R}^p$, $pgeq2$, as $N to infty$. For $f$ decreasing and convex, su
We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define th
Weyl points are degenerate points on the spectral bands at which energy bands intersect conically. They are the origins of many novel physical phenomena and have attracted much attention recently. In this paper, we investigate the existence of such p
The paper contains constructions of Hilbert systems for the action of the circle group $T$ using subgroups of implementable Bogoljubov unitaries w.r.t. Fock representations of the Fermion algebra for suitable data of the selfdual framework: ${cal H}$
We extend the work by Mastroianni and Szabados regarding the barycentric interpolant introduced by J.-P. Berrut in 1988, for equally spaced nodes. We prove fully their first conjecture and present a proof of a weaker version of their second conjectur