ﻻ يوجد ملخص باللغة العربية
We derive the complete asymptotic expansion in terms of powers of $N$ for the geodesic $f$-energy of $N$ equally spaced points on a rectifiable simple closed curve $Gamma$ in ${mathbb R}^p$, $pgeq2$, as $N to infty$. For $f$ decreasing and convex, such a point configuration minimizes the $f$-energy $sum_{j eq k}f(d(mathbf{x}_j, mathbf{x}_k))$, where $d$ is the geodesic distance (with respect to $Gamma$) between points on $Gamma$. Completely monotonic functions, analytic kernel functions, Laurent series, and weighted kernel functions $f$ are studied. % Of particular interest are the geodesic Riesz potential $1/d^s$ ($s eq 0$) and the geodesic logarithmic potential $log(1/d)$. By analytic continuation we deduce the expansion for all complex values of $s$.
We prove a conjecture of Ambrus, Ball and Erd{e}lyi that equally spaced points maximize the minimum of discrete potentials on the unit circle whenever the potential is of the form sum_{k=1}^n f(d(z,z_k)), where $f:[0,pi]to [0,infty]$ is non-increasin
We consider discrete spectra of bound states for non-relativistic motion in attractive potentials V_{sigma}(x) = -|V_{0}| |x|^{-sigma}, 0 < sigma leq 2. For these potentials the quasiclassical approximation for n -> infty predicts quantized energy le
Let $Lambda$ be a lattice in ${bf R}^d$ with positive co-volume. Among $Lambda$-periodic $N$-point configurations, we consider the minimal renormalized Riesz $s$-energy $mathcal{E}_{s,Lambda}(N)$. While the dominant term in the asymptotic expansion o
We survey known results and present estimates and conjectures for the next-order term in the asymptotics of the optimal logarithmic energy and Riesz $s$-energy of $N$ points on the unit sphere in $mathbb{R}^{d+1}$, $dgeq 1$. The conjectures are based
Given a 3-dimensional Riemannian manifold (M,g), we investigate the existence of positive solutions of the nonlinear Klein-Gordon-Maxwell system and nonlinear Schroedinger-Maxwell system with subcritical nonlinearity. We prove that the number of one