ﻻ يوجد ملخص باللغة العربية
We have developed a new in situ method to calibrate optical tweezers experiments and simultaneously measure the size of the trapped particle or the viscosity of the surrounding fluid. The positional fluctuations of the trapped particle are recorded with a high-bandwidth photodetector. Next, we compute the mean-square displacement, as well as the velocity autocorrelation function of the sphere and compare it to the theory of Brownian motion including hydrodynamic memory effects. A careful measurement and analysis of the time scales characterizing the dynamics of the harmonically bound sphere fluctuating in a viscous medium then directly yields all relevant parameters. Finally, we test the method for different optical trap strengths, with different bead sizes and in different fluids, and we find excellent agreement with the values provided by the manufacturers. The proposed approach overcomes the most commonly encountered limitations in precision when analyzing the power spectrum of position fluctuations in the region around the corner frequency. These low frequencies are usually prone to errors due to drift, limitations in the detection and trap linearity as well as short acquisition times resulting in poor statistics. Furthermore, the strategy can be generalized to Brownian motion in more complex environments, provided the adequate theories are available.
Viscosity is an important property of out-of-equilibrium systems such as active biological materials and driven non-Newtonian fluids, and for fields ranging from biomaterials to geology, energy technologies and medicine. However, noninvasive viscosit
Combining experiments on active colloids, whose propulsion velocity can be controlled via a feedback loop, and theory of active Brownian motion, we explore the dynamics of an overdamped active particle with a motility that depends explicitly on the p
Diffusive transport in many complex systems features a crossover between anomalous diffusion at short times and normal diffusion at long times. This behavior can be mathematically modeled by cutting off (tempering) beyond a mesoscopic correlation tim
We have simulated the motion of a bead subjected to a constant force while embedded in a network of semiflexible polymers which can represent actin filaments. We find that the bead displacement obeys the power law x ~ t^alfa. After the initial stage
We study the 2D motion of colloidal dimers by single-particle tracking and compare the experimental observations obtained by bright-field microscopy to theoretical predictions for anisotropic diffusion. The comparison is based on the mean-square disp