ﻻ يوجد ملخص باللغة العربية
We study the joint probability density of the eigenvalues of a product of rectangular real, complex or quaternion random matrices in a unified way. The random matrices are distributed according to arbitrary probability densities, whose only restriction is the invariance under left and right multiplication by orthogonal, unitary or unitary symplectic matrices, respectively. We show that a product of rectangular matrices is statistically equivalent to a product of square matrices. Hereby we prove a weak commutation relation of the random matrices at finite matrix sizes, which previously have been discussed for infinite matrix size. Moreover we derive the joint probability densities of the eigenvalues. To illustrate our results we apply them to a product of random matrices drawn from Ginibre ensembles and Jacobi ensembles as well as a mixed version thereof. For these weights we show that the product of complex random matrices yield a determinantal point process, while the real and quaternion matrix ensembles correspond to Pfaffian point processes. Our results are visualized by numerical simulations. Furthermore, we present an application to a transport on a closed, disordered chain coupled to a particle bath.
We consider the product of n complex non-Hermitian, independent random matrices, each of size NxN with independent identically distributed Gaussian entries (Ginibre matrices). The joint probability distribution of the complex eigenvalues of the produ
The Nearest Neighbour Spacing (NNS) distribution can be computed for generalized symmetric 2x2 matrices having different variances in the diagonal and in the off-diagonal elements. Tuning the relative value of the variances we show that the distribut
In this paper, we study the product of two complex Ginibre matrices and the loop equations satisfied by their resolvents (i.e. the Stieltjes transform of the correlation functions). We obtain using Schwinger-Dyson equation (SDE) techniques the genera
We consider a general Langevin dynamics for the one-dimensional N-particle Coulomb gas with confining potential $V$ at temperature $beta$. These dynamics describe for $beta=2$ the time evolution of the eigenvalues of $Ntimes N$ random Hermitian matri
Rectangular real $N times (N + u)$ matrices $W$ with a Gaussian distribution appear very frequently in data analysis, condensed matter physics and quantum field theory. A central question concerns the correlations encoded in the spectral statistics