ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure Study of BiS2-Based Superconductors Bi4O4S3 and La(O,F)BiS2

304   0   0.0 ( 0 )
 نشر من قبل Hisashi Kotegawa
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the electrical resistivity measurements under pressure for the recently discovered BiS2-based layered superconductors Bi4O4S3 and La(O,F)BiS2. In Bi4O4S3, the transition temperature Tc decreases monotonically without a distinct change in the metallic behavior in the normal state. In La(O,F)BiS2, on the other hand, Tc initially increases with increasing pressure and then decreases above ? 1 GPa. The semiconducting behavior in the normal state is suppressed markedly and monotonically, whereas the evolution of Tc is nonlinear. The strong suppression of the semiconducting behavior without doping in La(O,F)BiS2 suggests that the Fermi surface is located in the vicinity of some instability. In the present study, we elucidate that the superconductivity in the BiS2 layer favors the Fermi surface at the boundary between the semiconducting and metallic behaviors.



قيم البحث

اقرأ أيضاً

We investigate the external hydrostatic pressure effect on the superconducting transition temperature (Tc) of new layered superconductors Bi4O4S3 and NdO0.5F0.5BiS2. Though the Tc is found to have moderate decrease from 4.8 K to 4.3 K (dTconset/dP = -0.28 K/GPa) for Bi4O4S3 superconductor, the same increases from 4.6 K to 5 K (dTconset/dP = 0.44 K/GPa) upto 1.31 GPa followed by a sudden decrease from 5 K to 4.7 K upto 1.75 GPa for NdO0.5F0.5BiS2 superconductor. The variation of Tc in these systems may be correlated to increase or decrease of the charge carriers in the density of states under externally applied pressure.
We present an optical spectroscopy study on F-substituted NdOBiS$_2$ superconducting single crystals grown using KCl/LiCl flux method. The measurement reveals a simple metallic response with a relatively low screened plasma edge near 5000 cm. The pla sma frequency is estimated to be 2.1 eV, which is much smaller than the value expected from the first-principles calculations for an electron doping level of x=0.5, but very close to the value based on a doping level of 7$%$ of itinerant electrons per Bi site as determined by ARPES experiment. The energy scales of the interband transitions are also well reproduced by the first-principles calculations. The results suggest an absence of correlation effect in the compound, which essentially rules out the exotic pairing mechanism for superconductivity or scenario based on the strong electronic correlation effect. The study also reveals that the system is far from a CDW instability as being widely discussed for a doping level of x=0.5.
Pressure effects on a recently discovered BiS2-based superconductor Bi2(O,F)S2 (Tc = 5.1 K) were examined via two different methods; high pressure resistivity measurement and high pressure annealing. The effects of these two methods on the supercondu cting properties of Bi2(O,F)S2 were significantly different although in both methods hydrostatic pressure is applied to the sample by the cubic-anvil-type apparatus. In high pressure resistivity measurement, Tc linearly decreased at the rate of -1.2 K GPa-1. In contrast, the Tc of 5.1 K is maintained after high pressure annealing under 2 GPa and 470{deg}C of optimally doped sample despite significant change of lattice parameters. In addition, superconductivity was observed in fluorine-free Bi2OS2 after high pressure annealing. These results suggest that high pressure annealing would cause a unique effect on physical properties of layered compounds.
Measurements of electrical resistivity were performed between 3 and 300 K at various pressures up to 2.8 GPa on the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln = Pr, Nd). At lower pressures, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 exhibit superconductivi ty with critical temperatures Tc of 3.5 and3.9 K, respectively. As pressure is increased, both compounds undergo a transition at a pressure Pt from a low Tc superconducting phase to a high Tc superconducting phase in which Tc reaches maximum values of 7.6 and 6.4 K for PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2, respectively. The pressure-induced transition is characterized by a rapid increase in Tc within a small range in pressure of ~0.3 GPa for both compounds. In the normal state of PrO0.5F0.5BiS2, the transition pressure Pt correlates with the pressure where the suppression of semiconducting behaviour saturates. In the normal state of NdO0.5F0.5BiS2, Pt is coincident with a semiconductor-metal transition. This behaviour is similar to the results recently reported for the LnO0.5F0.5BiS2 (Ln = La, Ce) compounds. We observe that Pt and the size of the jump in Tc between the two superconducting phases both scale with the lanthanide element in LnO0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd).
We report the sulfur isotope effect on transition temperature in a BiS2-based superconductor Bi4O4S3. Polycrystalline samples of Bi4O4S3 were prepared using 32S and 34S isotope chemicals. From magnetization analyses, the isotope exponent (aS) was est imated as -0.1 < aS < 0.1. Although the Tc estimated from electrical resistivity was scattered as compared to those estimated from the magnetization, we observed no clear correlation between Tc and the isotope mass. The present results suggest that unconventional paring states are essential in Bi4O4S3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا