ﻻ يوجد ملخص باللغة العربية
We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.
We show that a tilted magnetic field transforms the structure and THz dynamics of charge domains in a biased semiconductor superlattice. At critical field values, strong coupling between the Bloch and cyclotron motion of a miniband electron triggers
We discuss experimentally realizable situations in which surface effects may screen out the dipolar interactions in an assembly of nanomagnets, which then behaves as a noninteracting system. We consider three examples of physical observables, equilib
The unpredictability of a single quantum event lies at the very core of quantum mechanics. Physical information is therefore drawn from a statistical evaluation of many such processes. Nevertheless, recording each single quantum event in a time trace
Single-electron pumps based on isolated impurity atoms have recently been experimentally demonstrated. In these devices the Coulomb potential of an atom creates a localised electron state with a large charging energy and considerable orbital level sp
We show that the spins of all electrons, each confined in a quantum dot of an (In,Ga)As/GaAs dot ensemble, can be driven into a single mode of precession about a magnetic field. This regime is achieved by allowing only a single mode within the electr