ﻻ يوجد ملخص باللغة العربية
We show that a tilted magnetic field transforms the structure and THz dynamics of charge domains in a biased semiconductor superlattice. At critical field values, strong coupling between the Bloch and cyclotron motion of a miniband electron triggers chaotic delocalization of the electron orbits, causing strong resonant enhancement of their drift velocity. This dramatically affects the collective electron behavior by inducing multiple propagating charge domains and GHz-THz current oscillations with frequencies ten times higher than with no tilted field.
We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characte
We present fully quantum-mechanical magnetotransport calculations for short-period lateral superlattices with one-dimensional electrostatic modulation. A non-perturbative treatment of both magnetic field and modulation potential proves to be necessar
Nonlinear charge transport in strongly coupled semiconductor superlattices is described by Wigner-Poisson kinetic equations involving one or two minibands. Electron-electron collisions are treated within the Hartree approximation whereas other inelas
While it has been recently demonstrated that, for quasi-2D electron gas (Q2DEG) with one filled miniband, the dynamic exchange $f_x$ and Hartree $f_H$ kernels cancel each other in the low-density regime $r_srightarrow infty$ (by half and completely,
We report on magnetotransport measurements in two MBE-grown GaAs/AlGaAs superlattices formed by wide and narrow quantum wells and thin Si-doped barriers subject to tilted magnetic fields. It has been shown that illumination of the strongly coupled su