ﻻ يوجد ملخص باللغة العربية
We present the results of full new calculation of radiocarbon 14C production in the Earth atmosphere, using a numerical Monte-Carlo model. We provide, for the first time, a tabulated 14C yield function for the energy of primary cosmic ray particles ranging from 0.1 to 1000 GeV/nucleon. We have calculated the global production rate of 14C, which is 1.64 and 1.88 atoms/cm2/s for the modern time and for the pre-industrial epoch, respectively. This is close to the values obtained from the carbon cycle reservoir inventory. We argue that earlier models overestimated the global 14C production rate because of outdated spectra of cosmic ray heavier nuclei. The mean contribution of solar energetic particles to the global 14C is calculated as about 0.25% for the modern epoch. Our model provides a new tool to calculate the 14C production in the Earths atmosphere, which can be applied, e.g., to reconstructions of solar activity in the past.
A new model of cosmogenic tritium ($^3$H) production in the atmosphere is presented. The model belongs to the CRAC (Cosmic-Ray Atmospheric Cascade) family and is named as CRAC:3H. It is based on a full Monte-Carlo simulation of the cosmic-ray induced
Variations of radiocarbon concentration have been studied in annual rings for the last 350 years (1600-1950)on the basis of our experimental research using methods of spectral analysis. From this interval of time special attention is paid to the so-c
It has been recently claimed (Zolotova and Ponyavin, Solar Phys., 291, 2869, 2016, ZP16 henceforth) that a mid-latitude optical phenomenon, which took place over the city of Astrakhan in July 1670, according to Russian chronicles, was a strong aurora
A survey of the data on measured particle fluxes and the rate of ionization in the atmosphere is presented. Measurements as a function of altitude, time and cut-off rigidity are compared with simulations of particle production from cosmic rays. The s
Eddy saturation describes the nonlinear mechanism in geophysical flows whereby, when average conditions are considered, direct forcing of the zonal flow increases the eddy kinetic energy, while the energy associated with the zonal flow does not incre