ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of cosmogenic radiocarbon concentration variations in the Earths atmosphere during solar activity of Mounder minimum (1645-1715)

83   0   0.0 ( 0 )
 نشر من قبل Valeri Bochorishvili
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Variations of radiocarbon concentration have been studied in annual rings for the last 350 years (1600-1950)on the basis of our experimental research using methods of spectral analysis. From this interval of time special attention is paid to the so-called period of the Maunder minimum (1645-1715) of solar activity. In the experimental series of corresponding period two types of periodicity are revealed: 20 year and 8 year.



قيم البحث

اقرأ أيضاً

We present the results of full new calculation of radiocarbon 14C production in the Earth atmosphere, using a numerical Monte-Carlo model. We provide, for the first time, a tabulated 14C yield function for the energy of primary cosmic ray particles r anging from 0.1 to 1000 GeV/nucleon. We have calculated the global production rate of 14C, which is 1.64 and 1.88 atoms/cm2/s for the modern time and for the pre-industrial epoch, respectively. This is close to the values obtained from the carbon cycle reservoir inventory. We argue that earlier models overestimated the global 14C production rate because of outdated spectra of cosmic ray heavier nuclei. The mean contribution of solar energetic particles to the global 14C is calculated as about 0.25% for the modern epoch. Our model provides a new tool to calculate the 14C production in the Earths atmosphere, which can be applied, e.g., to reconstructions of solar activity in the past.
Recent advances in our understanding of the dynamical history of the Solar system have altered the inferred bombardment history of the Earth during accretion of the Late Veneer, after the Moon-forming impact. We investigate how the bombardment by pla netesimals left-over from the terrestrial planet region after terrestrial planet formation, as well as asteroids and comets, affects the evolution of Earths early atmosphere. We develop a new statistical code of stochastic bombardment for atmosphere evolution, combining prescriptions for atmosphere loss and volatile delivery derived from hydrodynamic simulations and theory with results from dynamical modelling of realistic populations of impactors. We find that for an initially Earth-like atmosphere impacts cause moderate atmospheric erosion with stochastic delivery of large asteroids giving substantial growth ($times 10$) in a few $%$ of cases. The exact change in atmosphere mass is inherently stochastic and dependent on the dynamics of the left-over planetesimals. We also consider the dependence on unknowns including the impactor volatile content, finding that the atmosphere is typically completely stripped by especially dry left-over planetesimals ($<0.02 ~ %$ volatiles). Remarkably, for a wide range of initial atmosphere masses and compositions, the atmosphere converges towards similar final masses and compositions, i.e. initially low mass atmospheres grow whereas massive atmospheres deplete. While the final properties are sensitive to the assumed impactor properties, the resulting atmosphere mass is close to that of current Earth. The exception to this is that a large initial atmosphere cannot be eroded to the current mass unless the atmosphere was initially primordial in composition.
82 - S. Carolan 2019
As a star spins-down during the main sequence, its wind properties are affected. In this work, we investigate how the Earths magnetosphere has responded to the change in the solar wind. Earths magnetosphere is simulated using 3D magnetohydrodynamic m odels that incorporate the evolving local properties of the solar wind. The solar wind, on the other hand, is modelled in 1.5D for a range of rotation rates Omega from 50 to 0.8 times the present-day solar rotation (Omega_sun). Our solar wind model uses empirical values for magnetic field strengths, base temperature and density, which are derived from observations of solar-like stars. We find that for rotation rates ~10 Omega_sun, Earths magnetosphere was substantially smaller than it is today, exhibiting a strong bow shock. As the sun spins down, the magnetopause standoff distance varies with Omega^{-0.27} for higher rotation rates (early ages, > 1.4 Omega_sun), and with Omega^{-2.04} for lower rotation rates (older ages, < 1.4 Omega_sun). This break is a result of the empirical properties adopted for the solar wind evolution. We also see a linear relationship between magnetopause distance and the thickness of the shock on the subsolar line for the majority of the evolution (< 10 Omega_sun). It is possible that a young fast rotating Sun would have had rotation rates as high as 30 to 50 Omega_sun. In these speculative scenarios, at 30 Omega_sun, a weak shock would have been formed, but for 50 Omega_sun, we find that no bow shock could be present around Earths magnetosphere. This implies that with the Sun continuing to spin down, a strong shock would have developed around our planet, and remained for most of the duration of the solar main sequence.
The Maunder minimum (MM) of greatly reduced solar activity took place in 1645-1715, but the exact level of sunspot activity is uncertain as based, to a large extent, on historical generic statements of the absence of spots on the Sun. Here we aim, us ing a conservative approach, to assess the level and length of solar cycle during the Maunder minimum, on the basis of direct historical records by astronomers of that time. A database of the active and inactive days (days with and without recorded sunspots on the solar disc respectively) is constructed for three models of different levels of conservatism (loose ML, optimum MO and strict MS models) regarding generic no-spot records. We have used the active day fraction to estimate the group sunspot number during the MM. A clear cyclic variability is found throughout the MM with peaks at around 1655--1657, 1675, 1684 and 1705, and possibly 1666, with the active day fraction not exceeding 0.2, 0.3 or 0.4 during the core MM, for the three models. Estimated sunspot numbers are found very low in accordance with a grand minimum of solar activity. We have found, for the core MM (1650-1700), that: (1) A large fraction of no-spot records, corresponding to the solar meridian observations, may be unreliable in the conventional database. (2) The active day fraction remained low (below 0.3-0.4) throughout the MM, indicating the low level of sunspot activity. (3) The solar cycle appears clearly during the core MM. (4) The length of the solar cycle during the core MM appears $9pm 1$ years, but there is an uncertainty in that. (5) The magnitude of the sunspot cycle during MM is assessed to be below 5-10 in sunspot numbers; A hypothesis of the high solar cycles during the MM is not confirmed.
We investigate the characteristics and the sources of the slow (< 450 km/s) solar wind during the four years (2006-2009) of low solar activity between Solar Cycles 23 and 24. We use a comprehensive set of in-situ observations in the near-Earth solar wind (Wind and ACE) and remove the periods when large-scale interplanetary coronal mass ejections were present. The investigated period features significant variations in the global coronal structure, including the frequent presence of low-latitude active regions in 2006-2007, long-lived low- and mid-latitude coronal holes in 2006 - mid-2008 and mostly the quiet Sun in 2009. We examine both Carrington Rotation averages of selected solar plasma, charge state and compositional parameters and distributions of these parameters related to Quiet Sun, Active Region Sun and the Coronal Hole Sun. While some of the investigated parameters (e.g., speed, the C^{+6}/C^{+4} and He/H ratio) show clear variations over our study period and with solar wind source type, some (Fe/O) exhibit very little changes. Our results highlight the difficulty in distinguishing between the slow solar wind sources based on the inspection of the solar wind conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا