ترغب بنشر مسار تعليمي؟ اضغط هنا

Core percolation on complex networks

139   0   0.0 ( 0 )
 نشر من قبل Yang-Yu Liu
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

As a fundamental structural transition in complex networks, core percolation is related to a wide range of important problems. Yet, previous theoretical studies of core percolation have been focusing on the classical ErdH{o}s-Renyi random networks with Poisson degree distribution, which are quite unlike many real-world networks with scale-free or fat-tailed degree distributions. Here we show that core percolation can be analytically studied for complex networks with arbitrary degree distributions. We derive the condition for core percolation and find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is always continuous while for directed networks it becomes discontinuous when the in- and out-degree distributions are different. We also apply our theory to real-world directed networks and find, surprisingly, that they often have much larger core sizes as compared to random models. These findings would help us better understand the interesting interplay between the structural and dynamical properties of complex networks.



قيم البحث

اقرأ أيضاً

We study the extreme events taking place on complex networks. The transport on networks is modelled using random walks and we compute the probability for the occurance and recurrence of extreme events on the network. We show that the nodes with small er number of links are more prone to extreme events than the ones with larger number of links. We obtain analytical estimates and verify them with numerical simulations. They are shown to be robust even when random walkers follow shortest path on the network. The results suggest a revision of design principles and can be used as an input for designing the nodes of a network so as to smoothly handle an extreme event.
We reconsider the problem of percolation on an equilibrium random network with degree-degree correlations between nearest-neighboring vertices focusing on critical singularities at a percolation threshold. We obtain criteria for degree-degree correla tions to be irrelevant for critical singularities. We present examples of networks in which assortative and disassortative mixing leads to unusual percolation properties and new critical exponents.
122 - Jin-Fu Chen , Yi-Mu Du , Hui Dong 2020
Various coarse-grained models have been proposed to study the spreading dynamics in the network. A microscopic theory is needed to connect the spreading dynamics with the individual behaviors. In this letter, we unify the description of different spr eading dynamics on complex networks by decomposing the microscopic dynamics into two basic processes, the aging process and the contact process. A microscopic dynamical equation is derived to describe the dynamics of individual nodes on the network. The hierarchy of a duration coarse-grained (DCG) approach is obtained to study duration-dependent processes, where the transition rates depend on the duration of an individual node on a state. Applied to the epidemic spreading, such formalism is feasible to reproduce different epidemic models, e.g., the susceptible-infected-recovered and the susceptible-infected-susceptible models, and to associate with the corresponding macroscopic spreading parameters with the microscopic transition rate. The DCG approach enables us to obtain the steady state of the general SIS model with arbitrary duration-dependent recovery and infection rates. The current hierarchical formalism can also be used to describe the spreading of information and public opinions, or to model a reliability theory in networks.
In real networks, the dependency between nodes is ubiquitous; however, the dependency is not always complete and homogeneous. In this paper, we propose a percolation model with weak and heterogeneous dependency; i.e., dependency strengths could be di fferent between different nodes. We find that the heterogeneous dependency strength will make the system more robust, and for various distributions of dependency strengths both continuous and discontinuous percolation transitions can be found. For ErdH{o}s-R{e}nyi networks, we prove that the crossing point of the continuous and discontinuous percolation transitions is dependent on the first five moments of the dependency strength distribution. This indicates that the discontinuous percolation transition on networks with dependency is determined not only by the dependency strength but also by its distribution. Furthermore, in the area of the continuous percolation transition, we also find that the critical point depends on the first and second moments of the dependency strength distribution. To validate the theoretical analysis, cases with two different dependency strengths and Gaussian distribution of dependency strengths are presented as examples.
163 - Jin-Hua Zhao , Hai-Jun Zhou , 2013
Percolation theory concerns the emergence of connected clusters that percolate through a networked system. Previous studies ignored the effect that a node outside the percolating cluster may actively induce its inside neighbours to exit the percolati ng cluster. Here we study this inducing effect on the classical site percolation and K-core percolation, showing that the inducing effect always causes a discontinuous percolation transition. We precisely predict the percolation threshold and core size for uncorrelated random networks with arbitrary degree distributions. For low-dimensional lattices the percolation threshold fluctuates considerably over realizations, yet we can still predict the core size once the percolation occurs. The core sizes of real-world networks can also be well predicted using degree distribution as the only input. Our work therefore provides a theoretical framework for quantitatively understanding discontinuous breakdown phenomena in various complex systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا