ﻻ يوجد ملخص باللغة العربية
As a fundamental structural transition in complex networks, core percolation is related to a wide range of important problems. Yet, previous theoretical studies of core percolation have been focusing on the classical ErdH{o}s-Renyi random networks with Poisson degree distribution, which are quite unlike many real-world networks with scale-free or fat-tailed degree distributions. Here we show that core percolation can be analytically studied for complex networks with arbitrary degree distributions. We derive the condition for core percolation and find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is always continuous while for directed networks it becomes discontinuous when the in- and out-degree distributions are different. We also apply our theory to real-world directed networks and find, surprisingly, that they often have much larger core sizes as compared to random models. These findings would help us better understand the interesting interplay between the structural and dynamical properties of complex networks.
We study the extreme events taking place on complex networks. The transport on networks is modelled using random walks and we compute the probability for the occurance and recurrence of extreme events on the network. We show that the nodes with small
We reconsider the problem of percolation on an equilibrium random network with degree-degree correlations between nearest-neighboring vertices focusing on critical singularities at a percolation threshold. We obtain criteria for degree-degree correla
Various coarse-grained models have been proposed to study the spreading dynamics in the network. A microscopic theory is needed to connect the spreading dynamics with the individual behaviors. In this letter, we unify the description of different spr
In real networks, the dependency between nodes is ubiquitous; however, the dependency is not always complete and homogeneous. In this paper, we propose a percolation model with weak and heterogeneous dependency; i.e., dependency strengths could be di
Percolation theory concerns the emergence of connected clusters that percolate through a networked system. Previous studies ignored the effect that a node outside the percolating cluster may actively induce its inside neighbours to exit the percolati