ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Coarse-grained Approach to the Duration-dependent Spreading Dynamics in Complex Networks

123   0   0.0 ( 0 )
 نشر من قبل Jin-Fu Chen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Various coarse-grained models have been proposed to study the spreading dynamics in the network. A microscopic theory is needed to connect the spreading dynamics with the individual behaviors. In this letter, we unify the description of different spreading dynamics on complex networks by decomposing the microscopic dynamics into two basic processes, the aging process and the contact process. A microscopic dynamical equation is derived to describe the dynamics of individual nodes on the network. The hierarchy of a duration coarse-grained (DCG) approach is obtained to study duration-dependent processes, where the transition rates depend on the duration of an individual node on a state. Applied to the epidemic spreading, such formalism is feasible to reproduce different epidemic models, e.g., the susceptible-infected-recovered and the susceptible-infected-susceptible models, and to associate with the corresponding macroscopic spreading parameters with the microscopic transition rate. The DCG approach enables us to obtain the steady state of the general SIS model with arbitrary duration-dependent recovery and infection rates. The current hierarchical formalism can also be used to describe the spreading of information and public opinions, or to model a reliability theory in networks.



قيم البحث

اقرأ أيضاً

169 - Sen Pei , Hernan A. Makse 2013
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from the epidemic control, innovation diffusion, viral marketing, social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community -- LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in LiveJournal social network, only a small fraction of them involve in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
We study the extreme events taking place on complex networks. The transport on networks is modelled using random walks and we compute the probability for the occurance and recurrence of extreme events on the network. We show that the nodes with small er number of links are more prone to extreme events than the ones with larger number of links. We obtain analytical estimates and verify them with numerical simulations. They are shown to be robust even when random walkers follow shortest path on the network. The results suggest a revision of design principles and can be used as an input for designing the nodes of a network so as to smoothly handle an extreme event.
As a fundamental structural transition in complex networks, core percolation is related to a wide range of important problems. Yet, previous theoretical studies of core percolation have been focusing on the classical ErdH{o}s-Renyi random networks wi th Poisson degree distribution, which are quite unlike many real-world networks with scale-free or fat-tailed degree distributions. Here we show that core percolation can be analytically studied for complex networks with arbitrary degree distributions. We derive the condition for core percolation and find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is always continuous while for directed networks it becomes discontinuous when the in- and out-degree distributions are different. We also apply our theory to real-world directed networks and find, surprisingly, that they often have much larger core sizes as compared to random models. These findings would help us better understand the interesting interplay between the structural and dynamical properties of complex networks.
Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic system represented by a Master Equation that can be modeled by a Fokker-Planck equation in a coarse-grained, mesoscopic description. We show that th e corresponding coarse-grained entropy production contains information on microscopic currents that are not captured by the Fokker-Planck equation and thus cannot be deduced from it. We study a discrete-state and a continuous-state system, deriving in both the cases an analytical expression for the coarse-graining corrections to the entropy production. This result elucidates the limits in which there is no loss of information in passing from a Master Equation to a Fokker-Planck equation describing the same system. Our results are amenable of experimental verification, which could help to infer some information about the underlying microscopic processes.
A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction of all the links of the network. Earlier studies based on steady state degree distribution and on the mapping to Bose-Einstein condensation, were able to identify the critical point. Here we characterize the dynamics of condensation and we present evidence that below the condensation temperature there is a slow down of the dynamics and that a single node (not necessarily the best node in the network) emerges as the winner for very long times. The characteristic time t* at which this phenomenon occurs diverges both at the critical point and at $T -> 0$ when new links are attached deterministically to the highest quality node of the network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا