ﻻ يوجد ملخص باللغة العربية
We consider a class of stochastic growth models on the integer lattice which includes various interesting examples such as the number of open paths in oriented percolation and the binary contact path process. Under some mild assumptions, we show that the total mass of the process grows exponentially in time whenever it survives. More precisely, we prove that there exists an open path, oriented in time, along which the mass grows exponentially fast.
We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. The class contains examples such as binary contact path process and potlatch process. We show the e
We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. We remark that the diffusive scaling limit proven in our previous work [Nagahata, Y., Yoshida, N.:
We consider a class of interacting particle systems with values in $[0,8)^{zd}$, of which the binary contact path process is an example. For $d ge 3$ and under a certain square integrability condition on the total number of the particles, we prove a
In invasion percolation, the edges of successively maximal weight (the outlets) divide the invasion cluster into a chain of ponds separated by outlets. On the regular tree, the ponds are shown to grow exponentially, with law of large numbers, central
We introduce a formula for translating any upper bound on the percolation threshold of a lattice g into a lower bound on the exponential growth rate of lattice animals $a(G)$ and vice-versa. We exploit this to improve on the best known asymptotic bou