ﻻ يوجد ملخص باللغة العربية
Several aspects of relations between braces and non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation are discussed and many consequences are derived. In particular, for each positive integer $n$ a finite square-free multipermutation solution of the Yang-Baxter equation with multipermutation level $n$ and an abelian involutive Yang-Baxter group is constructed. This answers a problem of Gateva-Ivanova and Cameron. It is also proved that finite non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation whose associated involutive Yang-Baxter group is abelian are retractable in the sense of Etingof, Schedler and Soloviev. Earlier the authors proved this with the additional square-free hypothesis on the solutions. Retractability of solutions is also proved for finite square-free non-degenerate involutive set-theoretic solutions associated to a left brace.
To every involutive non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation on a finite set $X$ there is a naturally associated finite solvable permutation group ${mathcal G}(X,r)$ acting on $X$. We prove that every primitive permut
Let $r:X^{2}rightarrow X^{2}$ be a set-theoretic solution of the Yang-Baxter equation on a finite set $X$. It was proven by Gateva-Ivanova and Van den Bergh that if $r$ is non-degenerate and involutive then the algebra $Klangle x in X mid xy =uv mbox
Given a finite bijective non-degenerate set-theoretic solution $(X,r)$ of the Yang--Baxter equation we characterize when its structure monoid $M(X,r)$ is Malcev nilpotent. Applying this characterization to solutions coming from racks, we rediscover s
In this paper, we mainly present some new solutions of the Hom-Yang-Baxter equation from Hom-algebras, Hom-coalgebras and Hom-Lie algebras, respectively. Also, we prove that these solutions are all self-inverse and give some examples. Finally,
Given a set-theoretic solution $(X,r)$ of the Yang--Baxter equation, we denote by $M=M(X,r)$ the structure monoid and by $A=A(X,r)$, respectively $A=A(X,r)$, the left, respectively right, derived structure monoid of $(X,r)$. It is shown that there ex