ترغب بنشر مسار تعليمي؟ اضغط هنا

Hom-Yang-Baxter equations and Hom-Yang-Baxter systems

98   0   0.0 ( 0 )
 نشر من قبل Shuangjian Guo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we mainly present some new solutions of the Hom-Yang-Baxter equation from Hom-algebras, Hom-coalgebras and Hom-Lie algebras, respectively. Also, we prove that these solutions are all self-inverse and give some examples. Finally, we introduce the notion of Hom-Yang-Baxter systems and obtain two kinds of Hom-Yang-Baxter systems.



قيم البحث

اقرأ أيضاً

Several aspects of relations between braces and non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation are discussed and many consequences are derived. In particular, for each positive integer $n$ a finite square-free multiperm utation solution of the Yang-Baxter equation with multipermutation level $n$ and an abelian involutive Yang-Baxter group is constructed. This answers a problem of Gateva-Ivanova and Cameron. It is also proved that finite non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation whose associated involutive Yang-Baxter group is abelian are retractable in the sense of Etingof, Schedler and Soloviev. Earlier the authors proved this with the additional square-free hypothesis on the solutions. Retractability of solutions is also proved for finite square-free non-degenerate involutive set-theoretic solutions associated to a left brace.
245 - E.H. Saidi , M.B. Sedra 1997
The $6 = 3times 2$ huge Lie algebra $Xi$ of all local and non local differential operators on a circle is applied to the standard Adler-Kostant-Symes (AKS) R-bracket sckeme. It is shown in particular that there exist three additional Lie structures, associated to three graded modified classical Yang-Baxter(GMCYB) equations. As we know from the standard case, these structures can be used to classify in a more consitent way a wide class of integrable systems. Other algebraic properties are also presented.
103 - F. Cedo , E. Jespers , J. Okninski 2020
To every involutive non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation on a finite set $X$ there is a naturally associated finite solvable permutation group ${mathcal G}(X,r)$ acting on $X$. We prove that every primitive permut ation group of this type is of prime order $p$. Moreover, $(X,r)$ is then a so called permutation solution determined by a cycle of length $p$. This solves a problem recently asked by A. Ballester-Bolinches. The result opens a new perspective on a possible approach to the classification problem of all involutive non-degenerate set-theoretic solutions.
145 - Maxim Goncharov 2019
We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang-Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for a solution $r$ the element $r+tau(r)$ is $L$-invariant.
506 - Jing-Ling Chen , Kang Xue , 2008
Spin interaction Hamiltonians are obtained from the unitary Yang--Baxter $breve{R}$-matrix. Based on which, we study Berry phase and quantum criticality in the Yang--Baxter systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا