ﻻ يوجد ملخص باللغة العربية
We report on theoretical studies of transport through graphene quantum dots weakly coupled to external ferromagnetic leads. The calculations are performed by exact diagonalization of a tight-binding Hamiltonian with finite Coulomb correlations for graphene sheet and by using the real-time diagrammatic technique in the sequential and cotunneling regimes. The emphasis is put on the role of graphene flake shape and spontaneous edge magnetization in transport characteristics, such as the differential conductance, tunneling magnetoresistance (TMR) and the shot noise. It is shown that for certain shapes of the graphene dots a negative differential conductance and nontrivial behavior of the TMR effect can occur.
We present Coulomb blockade measurements in a graphene double dot system. The coupling of the dots to the leads and between the dots can be tuned by graphene in-plane gates. The coupling is a non-monotonic function of the gate voltage. Using a purely
We measure tunnelling currents through electrostatically defined quantum dots in a GaAs/AlGaAs heterostructure connected to two leads. For certain tunnelling barrier configurations and high sample bias we find a pronounced resonance associated with a
The electronic states of an electrostatically confined cylindrical graphene quantum dot and the electric transport through this device are studied theoretically within the continuum Dirac-equation approximation and compared with numerical results obt
We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric
In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant