ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson and Andreev transport through quantum dots

143   0   0.0 ( 0 )
 نشر من قبل Alfredo Levy Yeyati
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we review the state of the art on the transport properties of quantum dot systems connected to superconducting and normal electrodes. The review is mainly focused on the theoretical achievements although a summary of the most relevant experimental results is also given. A large part of the discussion is devoted to the single level Anderson type models generalized to include superconductivity in the leads, which already contains most of the interesting physical phenomena. Particular attention is paid to the competition between pairing and Kondo correlations, the emergence of pi-junction behavior, the interplay of Andreev and resonant tunneling, and the important role of Andreev bound states which characterized the spectral properties of most of these systems. We give technical details on the several different analytical and numerical methods which have been developed for describing these properties. We further discuss the recent theoretical efforts devoted to extend this analysis to more complex situations like multidot, multilevel or multiterminal configurations in which novel phenomena is expected to emerge. These include control of the localized spin states by a Josephson current and also the possibility of creating entangled electron pairs by means of non-local Andreev processes.



قيم البحث

اقرأ أيضاً

We analyze the magnetic and transport properties of a double quantum dot coupled to superconducting leads. In addition to the possible phase transition to a $pi$ state, already present in the single dot case, this system exhibits a richer magnetic be havior due to the competition between Kondo and inter-dot antiferromagnetic coupling. We obtain results for the Josephson current which may help to understand recent experiments on superconductor-metallofullerene dimer junctions. We show that in such a system the Josephson effect can be used to control its magnetic configuration.
102 - M.M. Maska , T. Domanski 2017
We demonstrate that the selective equal spin Andreev reflection (SESAR) spectroscopy can be used in STM experiments to distinguish the zero-energy Majorana quasiparticles from the ordinary fermionic states of the Rashba chain. Such technique, designe d for probing the p-wave superconductivity, could be applied to the intersite pairing of equal-spin electrons in the chain of magnetic Fe atoms deposited on the superconducting Pb substrate. Our calculations of the effective pairing amplitude for individual spin components imply the magnetically polarized Andreev conductance, which can be used to `filter the Majorana quasiparticles from the ordinary in-gap states, although the pure spin current (i.e., perfect polarization) is impossible.
We analyze Andreev bound states (ABSs) that form in normal sections of a Rashba nanowire that is only partially covered by a superconducting layer. These ABSs are localized close to the ends of the superconducting section and can be pinned to zero en ergy over a wide range of magnetic field strengths even if the nanowire is in the non-topological regime. For finite-size nanowires (typically $lesssim 1$ $mu$m in current experiments), the ABS localization length is comparable to the length of the nanowire. The probability density of an ABS is therefore non-zero throughout the nanowire and differential-conductance calculations reveal a correlated zero-bias peak (ZBP) at both ends of the nanowire. When a second normal section hosts an additional ABS at the opposite end of the superconducting section, the combination of the two ABSs can mimic the closing and reopening of the bulk gap in local and non-local conductances accompanied by the appearance of the ZBP. These signatures are reminiscent of those expected for Majorana bound states (MBSs) but occur here in the non-topological regime. Our results demonstrate that conductance measurements of correlated ZBPs at the ends of a typical superconducting nanowire or an apparent closing and reopening of the bulk gap in the local and non-local conductance are not conclusive indicators for the presence of MBSs.
We study the influence of the proximity-induced pairing on electronic version of the Dicke effect in a heterostructure, comprising three quantum dots vertically coupled between the metallic and superconducting leads. We discuss a feasible experimenta l procedure for detecting the narrow/broad (subradiant/superradiant) contributions by means of the subgap Andreev spectroscopy. In the Kondo regime and for small energy level detuning the Dicke effect is manifested in the differential conductance.
Epitaxially grown, high quality semiconductor InSb nanowires are emerging material systems for the development of high performance nanoelectronics and quantum information processing and communication devices, and for the studies of new physical pheno mena in solid state systems. Here, we report on measurements of a superconductor-normal conductor-superconductor junction device fabricated from an InSb nanowire with aluminum based superconducting contacts. The measurements show a proximity induced supercurrent flowing through the InSb nanowire segment, with a critical current tunable by a gate, in the current bias configuration and multiple Andreev reflection characteristics in the voltage bias configuration. The temperature dependence and the magnetic field dependence of the critical current and the multiple Andreev reflection characteristics of the junction are also studied. Furthermore, we extract the excess current from the measurements and study its temperature and magnetic field dependences. The successful observation of the superconductivity in the InSb nanowire based Josephson junction device indicates that InSb nanowires provide an excellent material system for creating and observing novel physical phenomena such as Majorana fermions in solid state systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا