ﻻ يوجد ملخص باللغة العربية
In this paper we have given a generalisation of the earlier work by Prigogine et al. who have constructed a phenomenological model of entropy production via particle creation in the very early universe generated out of the vacuum rather than from a singularity, by including radiation also as the energy source and tried to develop an alternative cosmological model in which particle creation prevents the big bang. We developed Radiation dominated model of the universe which shows a general tendency that (i) it originates from instability of vacuum rather than from a singularity. (ii) Up to a characteristic time cosmological quantities like density, pressure, Hubble constant and expansion parameter vary rapidly with time. (iii) After the characteristic time these quantities settles down and the models are turned into de-sitter type model with uniform matter, radiation, creation densities and Hubbles constant H. The de-sitter regime survives during a decay time then connects continuously to a usual adiabatic matter radiation RW universe.The interesting thing in the paper is that we have related the phenomenological radiation dominated model to macroscopic model of quantum particle creation in the early universe giving rise to the present observed value of cosmic background radiation . It is also found that the dust filled model tallies exactly with that of the Prigogines one, which justifies that our model is generalized Prigogines model. Although the model originates from instability of vacuum rather than from a singularity, still there is a couple of unavoidable singularities in the model.
The stability properties of the Einstein Static solution of General Relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and st
We derive a model of dark energy which evolves with time via the scale factor. The equation of state $omega=(1-2alpha)/(1+2alpha)$ is studied as a function of a parameter $alpha$ introduced in this model. In addition to the recent accelerated expansi
Cylindrically symmetric inhomogeneous string cosmological model of the universe in presence of electromagnetic field is investigated. We have assumed that F_{12} is the only non-vanishing component of electromagnetic field tensor F_{ij}. The Maxwells
Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter s
In this paper, we have presented a model of the FLRW universe filled with matter and dark energy fluids, by assuming an ansatz that deceleration parameter is a linear function of the Hubble constant. This results in a time-dependent DP having deceler