ترغب بنشر مسار تعليمي؟ اضغط هنا

A Cosmological Model of Thermodynamic Open Universe

72   0   0.0 ( 0 )
 نشر من قبل Gopi Kant Goswami Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we have given a generalisation of the earlier work by Prigogine et al. who have constructed a phenomenological model of entropy production via particle creation in the very early universe generated out of the vacuum rather than from a singularity, by including radiation also as the energy source and tried to develop an alternative cosmological model in which particle creation prevents the big bang. We developed Radiation dominated model of the universe which shows a general tendency that (i) it originates from instability of vacuum rather than from a singularity. (ii) Up to a characteristic time cosmological quantities like density, pressure, Hubble constant and expansion parameter vary rapidly with time. (iii) After the characteristic time these quantities settles down and the models are turned into de-sitter type model with uniform matter, radiation, creation densities and Hubbles constant H. The de-sitter regime survives during a decay time then connects continuously to a usual adiabatic matter radiation RW universe.The interesting thing in the paper is that we have related the phenomenological radiation dominated model to macroscopic model of quantum particle creation in the early universe giving rise to the present observed value of cosmic background radiation . It is also found that the dust filled model tallies exactly with that of the Prigogines one, which justifies that our model is generalized Prigogines model. Although the model originates from instability of vacuum rather than from a singularity, still there is a couple of unavoidable singularities in the model.



قيم البحث

اقرأ أيضاً

The stability properties of the Einstein Static solution of General Relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and st ability of static solutions are considered in the framework of two recently proposed quantum gravity models. The previously known analysis of the Einstein Static solutions in the semiclassical regime of Loop Quantum Cosmology with modifications to the gravitational sector is extended to open cosmological models where a static neutrally stable solution is found. A similar analysis is also performed in the framework of Horava-Lifshitz gravity under detailed balance and projectability conditions. In the case of open cosmological models the two solutions found can be either unstable or neutrally stable according with the admitted values of the parameters.
118 - Hemza Azri , A. Bounames 2014
We derive a model of dark energy which evolves with time via the scale factor. The equation of state $omega=(1-2alpha)/(1+2alpha)$ is studied as a function of a parameter $alpha$ introduced in this model. In addition to the recent accelerated expansi on, the model predicts another decelerated phase. The age of the universe is found to be almost consistent with observation. In the limiting case, the cosmological constant model, we find that vacuum energy gravitates with a gravitational strength, different than Newtons constant. This enables degravitation of the vacuum energy which in turn produces the tiny observed curvature, rather than a 120 orders of magnitude larger value.
Cylindrically symmetric inhomogeneous string cosmological model of the universe in presence of electromagnetic field is investigated. We have assumed that F_{12} is the only non-vanishing component of electromagnetic field tensor F_{ij}. The Maxwells equations show that F_{12} is the function of $x$ alone whereas the magnetic permeability is the function of x and t both. To get the deterministic solution, it has been assumed that the expansion ($theta$) in the model is proportional to the eigen value $sigma^{1}_{1}$ of the shear tensor $sigma^{i}_{j}$. Some physical and geometric prperties of the model are also discussed.
Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter s ector. For this reason, the phenomenological bounds on such a running are not sufficiently restrictive. The situation can be different in the early universe when the gravitational field was sufficiently strong to provide an efficient creation of particles from the vacuum. We develop a framework for systematically exploring this ossibility. It is supposed that the running occurs in the epoch when the Dark Matter already decoupled and is expanding adiabatically, while baryons are approximately massless and can be abundantly created from vacuum due to the decay of vacuum energy. By using the handy model of Reduced Relativistic Gas for describing the Dark Matter, we consider the dynamics of both cosmic background and linear perturbations and evaluate the impact of the vacuum decay on the matter power spectrum and to the first CMB peak. Additionally, using the combined data of CMB+BAO+SNIa we find the best fit values for the free parameters of our model.
In this paper, we have presented a model of the FLRW universe filled with matter and dark energy fluids, by assuming an ansatz that deceleration parameter is a linear function of the Hubble constant. This results in a time-dependent DP having deceler ating-accelerating transition phase of the universe. This is a quintessence model $omega_{(de)}geq -1$. The quintessence phase remains for the period $(0 leq z leq 0.5806)$. The model is shown to satisfy current observational constraints. Various cosmological parameters relating to the history of the universe have been investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا