ترغب بنشر مسار تعليمي؟ اضغط هنا

Manifolds with almost nonnegative curvature operator and principal bundles

207   0   0.0 ( 0 )
 نشر من قبل Martin Herrmann
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study manifolds with almost nonnegative curvature operator (ANCO) and provide first examples of closed simply connected ANCO mannifolds that do not admit nonnegative curvature operator.



قيم البحث

اقرأ أيضاً

253 - Michael Munn 2009
Let $M^n$ be a complete, open Riemannian manifold with $Ric geq 0$. In 1994, Grigori Perelman showed that there exists a constant $delta_{n}>0$, depending only on the dimension of the manifold, such that if the volume growth satisfies $alpha_M := lim _{r to infty} frac{Vol(B_p(r))}{omega_n r^n} geq 1-delta_{n}$, then $M^n$ is contractible. Here we employ the techniques of Perelman to find specific lower bounds for the volume growth, $alpha(k,n)$, depending only on $k$ and $n$, which guarantee the individual $k$-homotopy group of $M^n$ is trivial.
121 - Jiayin Pan 2020
We survey the results on fundamental groups of open manifolds with nonnegative Ricci curvature. We also present some open questions on this topic.
148 - Xian-Tao Huang 2021
Suppose $(M,g)$ is a Riemannian manifold having dimension $n$, nonnegative Ricci curvature, maximal volume growth and unique tangent cone at infinity. In this case, the tangent cone at infinity $C(X)$ is an Euclidean cone over the cross-section $X$. Denote by $alpha=lim_{rrightarrowinfty}frac{mathrm{Vol}(B_{r}(p))}{r^{n}}$ the asymptotic volume ratio. Let $h_{k}=h_{k}(M)$ be the dimension of the space of harmonic functions with polynomial growth of growth order at most $k$. In this paper, we prove a upper bound of $h_{k}$ in terms of the counting function of eigenvalues of $X$. As a corollary, we obtain $lim_{krightarrowinfty}k^{1-n}h_{k}=frac{2alpha}{(n-1)!omega_{n}}$. These results are sharp, as they recover the corresponding well-known properties of $h_{k}(mathbb{R}^{n})$. In particular, these results hold on manifolds with nonnegative sectional curvature and maximal volume growth.
We prove some Liouville type theorems on smooth compact Riemannian manifolds with nonnegative sectional curvature and strictly convex boundary. This gives a nonlinear generalization in low dimension of the recent sharp lower bound of the first Steklo v eigenvalue by Xia-Xiong and verifies partially a conjecture by the third author. As a consequence, we derive several sharp Sobolev trace inequalities on these manifolds.
116 - Huihong Jiang , Yi-Hu Yang 2019
In a previous paper, we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimension $ge 6$. The purpose of the present paper is to use a different way to exhibit a family of complete $I$-dimensinal ($Ige5$) Riemannian manifolds of positive Ricci curvature, quadratically asymptotically nonnegative sectional curvature, and certain infinite Betti number $b_j$ ($2le jle I-2$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا