ﻻ يوجد ملخص باللغة العربية
Suppose $(M,g)$ is a Riemannian manifold having dimension $n$, nonnegative Ricci curvature, maximal volume growth and unique tangent cone at infinity. In this case, the tangent cone at infinity $C(X)$ is an Euclidean cone over the cross-section $X$. Denote by $alpha=lim_{rrightarrowinfty}frac{mathrm{Vol}(B_{r}(p))}{r^{n}}$ the asymptotic volume ratio. Let $h_{k}=h_{k}(M)$ be the dimension of the space of harmonic functions with polynomial growth of growth order at most $k$. In this paper, we prove a upper bound of $h_{k}$ in terms of the counting function of eigenvalues of $X$. As a corollary, we obtain $lim_{krightarrowinfty}k^{1-n}h_{k}=frac{2alpha}{(n-1)!omega_{n}}$. These results are sharp, as they recover the corresponding well-known properties of $h_{k}(mathbb{R}^{n})$. In particular, these results hold on manifolds with nonnegative sectional curvature and maximal volume growth.
Let $M^n$ be a complete, open Riemannian manifold with $Ric geq 0$. In 1994, Grigori Perelman showed that there exists a constant $delta_{n}>0$, depending only on the dimension of the manifold, such that if the volume growth satisfies $alpha_M := lim
In this paper we provide new existence results for isoperimetric sets of large volume in Riemannian manifolds with nonnegative Ricci curvature and Euclidean volume growth. We find sufficient conditions for their existence in terms of the geometry at
We survey the results on fundamental groups of open manifolds with nonnegative Ricci curvature. We also present some open questions on this topic.
We give a simple proof of a recent result due to Agostiniani, Fogagnolo and Mazzieri.
In this paper, we proved a compactness result about Riemannian manifolds with an arbitrary pointwisely pinched Ricci curvature tensor.