ﻻ يوجد ملخص باللغة العربية
The scintillation detection systems of liquid argon time projection chambers (LArTPCs) require wavelength shifters to detect the 128 nm scintillation light produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material that can shift this light to a wavelength of 425 nm, lending itself well to use in these detectors. We can coat the glass of photomultiplier tubes (PMTs) with TPB or place TPB-coated plates in front of the PMTs. In this paper, we investigate the degradation of a chemical TPB coating in a laboratory or factory environment to assess the viability of long-term TPB film storage prior to its initial installation in an LArTPC. We present evidence for severe degradation due to common fluorescent lights and ambient sunlight in laboratories, with potential losses at the 40% level in the first day and eventual losses at the 80% level after a month of exposure. We determine the degradation is due to wavelengths in the UV spectrum, and we demonstrate mitigating methods for retrofitting lab and factory environments.
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter ph
We study the stability of three types of popularly employed TPB coatings under immersion in liquid argon. TPB emanation from each coating is quantified by fluorescence assay of molecular sieve filter material after a prolonged soak time. Two of the c
The Mu2e experiment will search for a neutrino-less muon-to-electron conversion process with almost four orders of magnitude of sensitivity improvement relative to the current best limit. One important background is caused by cosmic ray muons, and pa
Based on test-beam measurements, we study the response of a liquid-scintillator detector equipped with wavelength-shifting optical modules, that are proposed e.g. for the IceCube experiment and the SHiP experiment, and adiabatic light guides that are
Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or